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as in any manner licensing the holder or any other person or corporation, or
conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

This report has been reviewed by the Information Office (0I) and is re-
Jeasable to the National Technical Information Service (NTIS). At NTIS, it
will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication,

IE M. FLORENCE SEPH S. FORD, Lt Colonel, USAF
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This report covers the design, analysis, and test work fonducted during Phase
Ib, Preliminary Design of the Primary Adhesively Bonded Structure (PABST)
program. The objectives of Phase Ib were two-fold: (1) design definition,

(2) surface preparation, adhesive/primer, and coatings/finishes evaluations
and screening.

An extensive struc?ura] design concept formulation and evaluation effort was
conducted culminating in the selection of three concepts which offered the —»
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sgreatest potential for acquisition cost, maintenance cost, and weight reduction
from the baseline structure. From these three concepts, the design selected
for continuation into Phase II, Detailed Design, was a combination close-
spaced/wide-spaced, internal/external skin stringer design. Iterative analysis
and design support by extensive environmental coupon and component testing
constituted the balance of the preliminary design effort of Phase Ib.

Two surface preparations were investigated and resutted in selection of the
phosphoric anodize. An immersion tank FPL etch was the reference standard. -
The adnesive systems considered were the new environmental resistant 250°F
cure, modified epoxy adhesives and their respective primers .. American
Cyanamid's FM-73 adhesive film with a mat carrier used in conjunction with
their BR-127 adhesive primer was the selected system for the PABST program.

Coupons and Components fabricated and tested in Phase Ih were suhjected to
extensive evaluacion to ensure adequate quality assurance and to screen
candidate state-of-the-art NDI capabilities. The Fabrication and Tooling
eﬁperience required for the balance of the program was acquired during this
Phase.

u UNCLASSTETLD

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

!

;

!
5 . ‘;i"‘ﬁ




hw:ﬁ"" B N S UOVIEN COY FELA- 00 e W AR ERS ot - P 3 00 I v S A TR0
i )

|

|

l'

FOREWGRD

This report presents the results of the preliminary design (Phase
Ib) of the Primary Adhesively Bonded Structure (PABST) program, Contract
F33615-75-C-3016. The effort described herein was performed by the Douglas
Aircraft Company, a division of the McDonnell Douglas Aircraft Corporation,
with Mr. E. W. Thrall, Jr. as the Program Manager.

This work was sponsored by the Air Force Flight Dynamics Laboratory
(AFFDL) under joint management and technical direction of AFFDL and the Air
Force Materials Laboratory (AFML), Wright-Patterson Air Force Base, Ohio.
This contract is administered as a part of the Advanced Metallic Structures,
Advanced Development Programs (AMS ADP), Program Element Number 63211F,
Project 486U. Lt. Col Joseph S. Ford is the ADP Manager and Mr. Jamie M.
Florence is the Project Engineer for the PABST program.

This work was performed during the period 19 February 1975 to
15 October 1976. JUB
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SUMMARY

The purpose of the PABST Program is to determine the economic and
technical feasibility of adhesively bonded primary aircraft structure.
The program consists of four Phases. Phase Ib was the preliminary design
phase, Phase II cornsists of the detail design of the selected concept,
Phase III consists of the fabrication and assembly of the component and
Phase IV performs the fatique, damage tolerance, residual strength and
yltimate test of the selected component. This report summarizes the results
of Phase Ib of this program.

External loads were generated based on the C-15 design speeds, gross
weights, cargo loading capability and payloads. Internal loads using ideal-
izations based on the skin and stringer concepts and the honeycomb concept
were generated.

Initially five concepts were designed and evaluated consisting of
(A) wide spaced longeron (B) close spaced longeron (C) honeycomb (D) corruga-
tions (E) beads and (F) external longeron employing fairings. Concept (D) was
eliminated early in Phase Ib and the remaining design effort was expanded on
(1) a concept combining concepts (A) and (B), (2) concept (C) and (3) a
variation of concept (F) without the complete aerodynamic fairing, i.e.,
external longeron only and local fairings at each longeron.

The three concepts were analysed for damage tolerance requirements with
the critical points on the fuselage selected on the basis of the internal
Toads generated. Four critical points were selected for the internal and
external longeron concept and two points for the honeycomb concept. The
critical points were checked for slow crack growth with a one bay crack and
fail safe conditions with (A) a two bay crack with center stiffener 'ntact
and (B) 15" foreign object damage - center stiffener out. A sensitivity
analysis was made for variation in stress level, bonded strap spacing, bonded
strap area and da/dn vs AK material data. Verification of the analysis
methods was made with tests of longeron and honeycomb panels.
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Analyses were made for intact adhesively bonded joints for the double-
strap joints used in lengitudinal splices, the flush single-strap joints used
in circumferential splices and the peecling apart of the skin and stiffening
elements under internal cabin pressure. Tests were performed and the test
results confirmed the predictions for the bonded joints for the ultimate mode.

An extensive slow cycle testing program at ambient and in hot (140°F)
humid (100% RH) environments was performed to demonstrate that the new

adhesive bonding technology selected had adequate environmental durability.
The test specimens consisted of double strap splices in thin sheet using a 30
minute cycle and a small number of thick adherend specimens using a one hour
cycle.

Slow cycle testing will be done and analyses procedures developed to
demonstrate the strength of flawed bonded joints. These flaws include porosity,
voids, fractured bondline, surface contamination, low bonding temperature,
excessive out time and short cure.

Various structural and environmental tests were performed in the
selection of the bonding system. Surface treatments, primers and protective
coatings were extensively evaluated to find an optimum combination. Tests
were performed to obtain material property data on the candidate adhesives.
The effects of mechanical fasteners through bonded joints were evaluated.

Hole preparation, riveting methods, and interference-fit fastener installation
were areas of investigation. A newer aluminum alloy 7475-T761 was being
considered for some primary structure applications. Data was obtained for
fatigue, fracture toughness and crack growth for this alloy.

Non-destructive inspection methods for adhesive bonds in primary structure
were extensively evaluated. Each non-destructive inspection method was tested
for its ability to detect defects in adhesively bonded assemblies and its
application and limitations. Types of bonded joints were assessed as to their
degree of difficulty for inspection. Studies were begun to select a non-
destructive inspection method for production inspection, in-service inspection
and the acceptable flaw sizes.
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Approximately 600 bonded test specimens and 94 mechanical assemblies
have been fabricated up to this time. The specimens fabricated range from
small coupons used for adhesive system testing to large fuselage panels used
for structural concept verification. Bonding fixtures have been fabricated
to facilitate the manufacture of both curved and flat bonded assemblies.

A production type quality assurance plan was used for the PABST
program. This plan involved a total approach to product quality with an over-
all goal {o prove structural integrity and durability of fuselage structure
when manufactured in a production environment. This plan encompassed the
elements of (1) design engineering and release, (2) material procurement,

(3) planning, (4) tooling, (5) fabrication, (6) receiving and inspection,
and (7) engineering test and evaluation. Failure and Rejection Reports
(FRRs) were made on all discrepancies encountered during the fabrication
of Phase Ib components.

To determine the economic viability of bonded structure various
cost aspects were taken into consideration. The acquisition, maintenance
and repair costs were all considered for each configuration. The costing
was an on-going study which was used in the overall process of evaluating
and salecting both design and manufacturing concepts.

'
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INTRODUCTION

The use of adhesive bonding in components of aircraft structure has
increased dramatically over the last 15 years to the point where most air-
craft delivered today utilize some degres of adhesive bonding. However,
these applications have been confined p~imarily to secondary structure where
the adhesive bond stress is a low percentage of the adhesive shear strength.
This experience with secondary structure has led to the recognition that
problems with adhesive bond durability, inspection and the effects of defects
must be solved prior to the extensive use of adhesive bonding on primary
structure.

Extensive government and industry exploratory development programs over
the past few years have resulted in improved adhesives. primers and surface
preparation, as well as improved laboratory test techniques that can closely
simulate the type and nature of service experience. In addition, non-
destructive inspection techniques for adhesive bonds have been vastly im-
proved. These developments have provided conficdence that a final validation
program should be pursued to prove the adequacy of adhesive bonding for
primary structure.

A series of interrlated Air Force sponsored programs have been con-
structed to obtain additional bond durability data on coupons and components,
provide data on sonic fatigue resistance of bonded structure and develop the
necessary manufacturing, field and depot repair methods, and the verification
of bondline defects.

In February of 1975 the Douglas Aircraft Company, under contract to the
Air Force, initiated a technology validation program for primary adhesive
bonded structures (PABST). This program was to perform a preliminary design,
perform detail design, fabricate test articles and perform coupon, component
and full scale fatigue, static and damage tolerance testing. The baseline
configuration was fifty-two (52) foot section of the fuselage of the YC-15
airplane. See Figure 1. The objective of PABST was to validate that appli-
cation of adhesive bonding could result in substantial cost and weight )
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savings when compared to conventional fabrication techniques, while providing
significant improvements in structural safety and durability. This report
documents the results of the Phase Ib Preliminary Design effort.
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STRUCTURAL DESIGN

The design effort for Phase Ib consisted of three tasks. First a formu-
Jation and evaluation activity determined those structural concepts with a
significant pay-off potential for an AMST class of fuselage. This task con-
cluded with the selection of three (3) concepts which were to be continued
through preliminary design. Concurrently, a baselire airplane was defined
that made maximum utilization of the YC-15 program as the baseline data
source. At the conclusion of these tasks, a design activity was conducted
which led to the generation of three preliminary design layouts of the ADP
component based on selected and approved concepts. These three preliminary
designs were developed to equivalent Tevels of detail.
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Baseline Fuselage

A side view of the baseline fuselage is shown in Figure 2 . This base-
line fuselage consists of a nose section, forward of station 439, and a cargo
compartment section, aft of station 439. Most of the fuselage shell is cylin-
drical with a constant 108 inch radius circular cross section starting from
station 516 and running to station 992.5 aft. Forward of station 516 to
station 330, the shell is conical {out of round) in cross sectional shape. In
the cargo compartment section, a trapezoidal wing box mounts to the upper por-
tion of the fuselage between stations 703 and 847. The cargo compartment
floor extends aft from station 439 to station 987 at a constant height,

z = -75.70. This floor continues forwerd to intersect a vertical pressure
bulkhead in the nose section at station 366. This vertical pressure bulkhead
seals off the lower half of the fuselage shell up to z = -26 where it then
runs horizontally forward to station 330. A crew entrance door is located at
the cargo compartment floor level in the nose section between stations 394
and 430. An emergency evacuation door is located in the cargo compartment
section about 18 - 22 inches above the floor between stations 559 and 583.
Two escape hatches are located on the upper fuselage centerline between
stations 607 and 631 and stations 943 and 967. Keels are located under the
floor of the cargo compartment at x = + 21. Access to the area under the
floor is provided by a hell hole door located between keels on the lower
centerline of the fuselage between station 799 and 823. Two (2) windows on
each side are provided between stations 559 and 583 and stations 943 and 967.
In the nose area, a pilots floor is provided at z = -3.075 which runs from
station 330 aft to station 439.

The semimonocoque baseline fuselage is structurally similar to the inter-
nal longeron concept, except that mechanical fasteners are used instead of
bonding. Because of this difference, the baseline longerons are Z-sections
and fuselage frames are attached to the shell by means of angle-section shear
clips. Titanium tear stoppers are provided under each fuselage frame shear
clip. Two 7075-T6 longitudinal tear stopper straps are provided externally
on the side of the shell where the longerons are wide spaced.
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Full Scale Demonstration Component

A view of the component is shown in Figure 3, This component consists
of a nose section, forward of station 439, and a cargo compartment section,
aft of station 439. Most of the fuselage shell is cylindrical with a constant
108 inch radius circular cross section starting from station 516 and extend-
ing aft to station 871. Forward of station 516 to station 367 the shell is
circular in cross sectional shape, while the lofted shape from station 367 to
station 516 is a circular arc. In the cargo compartment section, a rectangu-
lar wing box mounts to the upper portion of the fuselage between stations 703
and 847. The cargo compartment floor extends aft from station 367 to station
875 at a constant height, Z = -75.7.

The extruded floor plarks extend from X = + 25 to the side of the
fuselage; i.e., the center approximately four feet of fuselage width has no
floor planks. The open area located at the fuselage centerline has several
advantageous features.

° The amount of planking installed is sufficient to provide the
necessary load paths and stiffness requirements for the component
while minimizing fabrication and installation costs.

° Installed planking will provide sufficient data for cost analysis
purposes.

° The open center section provides easy access to the under floor area
for manufacturing, inspection, engineering, and test personnel.

A crew entrance docr is located at the cargo compartment floor level in
the nose section between stations 391 and 427. Keel members (extruded
channels) are located below the cargo floor and mechanically fastened to the
top of the inner flange of the frame members at X = + 25.

One window is provided on the left side of the fuselage just below
longeron 9 between stations 559 and 571. The "window" is a cutout (8.50
inch dia.) in the skin with an aluminum sheet simulating the clear plexiglas
window. This approach provides the desired anomaly (a cutout in the exterior

13




Rl T T R T T S e T A e s e IR AT e rremy
hﬂﬂ‘ IO W e BT B DA A Y0 X M 5 X241 A BT SNAS RO A s s

FIGURE 3. FULL-SCALE DEMONSTRATION COMPONENT

14

5
. N A oz . . . L al
oy Lo o idin s aiia wTrA w veesr., D-atocy il nWe»»yM




skin) while minimizing the cost impact on the program.

The semimoncoque fuselage component is structurally similar to the
internal longeron concept above the floor including longeron 10 and to the
external longeron concept below the floor. Three 7475-T761 longitudinal tear
stoppers are provided externally on the fuselage side where the longerons
are wide spaced. Two tear stoppers are located between longerons 8 and 9.
The panel assembly between longerons 9 and 10 has one tear stopper below
Tongeron 9 and a bonded longitudinal splice which functions as a tear stopper
located close to longeron 10.
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Formulation and Evaluation Studies

Five concepts were initially formulated and evaluated. These concepts,
shown in Figure 4, were (A) wide spaced longeron (B) close spaced longeron,
{C) honeycomb (D)eorrugations (E) beads and (F) external longeron employing fair-
ings. Evaluation of these concepts was sufficient to determine those concepts

with a significant pay-off potential for the AMST class of fuselage.

Of the five concepts formulated, beads and corrugations were determined
to have the least pay-off potential. Their advantages over conventional
structure were the higher shear allowables for a panel of equal skin gage,
fewer parts, and more uniform axial load distrivution. The bead height was
restricted due to material stretch forming limitations. Weight advantage of
the beaded section under axial load was lost at the frame where the beads
were flattened and produced eccentric loading. The transition from beads to
corrugation required a frame. Corrugation end fittings caused problems in
installation. Corrugation splices were difficult to make because of align-
ment and nesting problems. Joggles in the corrugations were impractical.
The shear tie between the fuselage frames and the skin was difficult with
corrugations. Both beads and corrugations are closed sections which are
difficult to inspect and repair and which present moisture traps that can
lead to corrosion.

The honeycomb concept was competitive with conventional structure because
of reduced number of parts, better failsafe capability, and doublers could be
buried in between the face sheets to provide a more uniform honding surface.
In addition, the minimal number of frames simplified placement of unique items
within the structure. The primary disadvantage of honeycomb was its suscep-
tability to foreign object damage. Other possible problems were splice areas

edge members, and repair problems. However, due to the potential reduced
cost payoff, honeycomb was selected as one of the three concepts for
continued evaluation,

The external Tongeron concept had many structural disadvantages when
external fairings were considered to reduce the aerodynamic penalty. Thus,

— - -~
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visual inspection and NDI were more difficult; close out areas were more com-
plex; 1ight fairings were more susceptible to field damage; tooling and manu-
facturing costs were increased. Without fairings, the concept of external
longerons was competitive with the other concepts. Frames, pressure bulkhead
caps and floor support bulkhead would attach directly to the skin. Continuous
frames without longeron cutouts would delete the need for circumferential tear
stoppers. An evaluation was made to quantify the aerodynamic penalty for
external Tongerons with and without fairings, See Appendix A. Because of
the structural potential of external longerons without fairings and with
knowledge of the aerodynamic penalty, this concept was selected and approved
as one of the final concepts for continuation through preliminary design.

Close and wide spaced bonded longeron concepts were about equal in
their potential payoff for an AMST class of fuselage. The close spaced
longeron concept was similar to conventional structure except bonding re-
placed mechanical attachments. This similarity gave a high degree of confi- '
dence in the structural arrangement and structural integration for close ,
spaced longerons. Wide spaced longerons required fewer cutouts in the frames.
Thus, the frame-to-skin shear tee could function as a crack-stopper and
simple tooling would be required for bonding. Each of these concepts were
continued through preliminary design. They were combined so the best advan-
tages of each would be utilized. Thus, close spaced longerons were used for
the upper and lower shell where longitudinal loads were highest. Wide spaced
longerons were used for the side of the shell where the shear loads were high.
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Based on the formulation and evaluation studies, concepts selected and
approved for preliminary design were (1) the internal longeron concept, (2)
the external longeron concept, and (3) the honeycomb concept. Preliminary
design layouts for these three concepts were generated to an equivalent level
of detail which included general structural arrangement, structural sizing,
splices, intersections, cutouts, and interface problems. Supporting trade
studies for these preliminary design layouts are included in Appendix A. It
was assumed, for all concepts, that floors, floor bulkheads, keels, pressure
bulkheads and wing box structures were common items which would be made
similar to the baseline structure.

PRPEN SIS DI

Internal Longeron Concept. - The internal longeron concept general arrange-
ment is similar to the baseline, shown in Figure 2 . Basic frame spacing in
the cargo compartment (stations 439-987) is 24 inches. Floor support bulk-
heads are at stations 439, 463, and every 48 inches thereafter to station 987;
i.e., every other frame station. Aluminum 7475-T761 tear stoppers are 3
provided under each longeria for fail-safe requirements. Two longitudinal
straps are also provided on the side of the fuselage to give added fail-safe
capability where the longerons c-e wide spaced. Light frames are provided
between the 24 inch spaced frames oi. the side of the fuselage where the
longerons are wide spaced in order t' increase the initial buckling stress of
the thin skins. In the nose area hetwe ~ stations 330 and 439, frames are
spaced at 9 inch intervals to res .t bendi. ; moments induced by cabin pressure :
in the out-of-round section. These frames are not cut-out for longeron
continuity as in the cargo compartment.
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Skin Panels: - Skin panels for the irternal longeron concept are shown in
Figure 5, Mechanical splices are denoted by M and bonded splices are de-
noted by B. Longitudinal mechanical splices were set at maximum distances
based on a manufacturing constraint for handling that limited the bonded

panel sizes to a maximum arc segment of 96 degrees. Longitudinal bonded skin
splices within the boundaries of the longitudinal mechanical skin splices were
determined by a vendor manufacturing constraint on the skin width of 94 inches
for 0.050 inch thick skin. A transverse mechanical splice is provided at the
boundary between the fuselage constant section and double contoured section

— 3
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to accomodate the separate tooling required for the nose section. Transverse
mechanical splices are also provided at the front spar, rear spar, and drag
1ink frame so the external loads from the wing and main landing gear will

have a direct path into the frames. In the nose section, transverse mechani-
cal splices are provided so the door panel can be made as one piece to simpli-
fy manufacturing.

Minimum skin thickness over the entire fuselage was set at C.050 inch
based on foreign object impact considerations. A1l skin material is 7475-T761
bare aluminum alloy. Skin thickness ranges from a minimum of 0.050 inch in
the area forward of the wing to a maximum of 0.10 inch between the rear spar
and drag link frames where shears are high due to landing loads induced by the
main landing gear and flight loads induced by the wing.

Fuselage skins are stiffened longitudinally by extruded J-section longer-
ons. These sections are 7075-T6 aluminum extrusion material. They are
spaced about 13 inches on center for the upper and lower shell. One longeron
breaks up the side shell at 75 inch spacing. Typical dimensions for the in-
ternal J-section longerons are shown in Figure 6 for a longeron at a bonded
splice and a basic longeron. Overall longeron height is 1.25 inch for the
basic longeron and 1.35 inch for the splice longeron. A J-section longeron
was chosen in preference to the more efficient Z-section longeron since it
was better suited for the bonding process adopted for the PABST Program. Thus,
bonding pressure applied in the autoclave to the outstanding flange of the
J-section will produce more uniform bonding surface pressure if the flange
against the skin is symmetrical with respect to the longeron web.

Typical skin splices required for the internal longeron skin panels are
shown in Figure 7. They consist of longitudinal and transverse skin splices
for both mechanical and bonded joints. Longitudinal bonded skin splices are
double lapped joints that consist of an inner and outer bonded splice plate
with a longeron bonded along the centerline of the splice. The longitudinal
mechanical splice is also a double lapped splice. For this splice the splice
plates are cold bonded to the skin and also mechanically attached with twe
rows of 0.188 inch diameter lockbolts spaced about 1.25 inches on center.

23
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The transverse bonded and mechanical splices are flush with respect to the
outside surface because of aerodynamic considerations. Two inner doublers,
one thick and one thin, join the skins together. These doublers are stepped
in order to produce a more uniform load transfer. For the transverse mechan-
ical splice, doublers and skin are cold bonded together. Two rows of 0.188
inch diameter Tockbolts spaced at 1.25 inch on center tie the thick and thin
doublers to the skin. A Tlead row of 0,188 inch diameter lockbolts spaced

2.5 inch on center tie the thin doubler to the skin.

Frames:- Transverse stiffening for the fuselage shell is provided by frames.
A typical fuselage frame in the cargo compartment is shown in Figure 8 for

the internal longeron concept. A frame tee with cutouts to provide longeron
continuity is bonded to the skin. A Z-section frame is attached to this shear
clip by means of 0.188 inch diameter rivets spaced about 1.0 inches on center.
Mechanical splices for the frames are staggered with respect to skin splices
as shown. Frame-shear clip height is 4.75 inch in the nose section and 4.95
inch in ihe cargo compartment section as shown in Figure 9. Frame thickness
is 0.030 inch in the nose section and 0.063 inch in the cargo compartment
except under the wing where it is 0.080 inch. Frames are rolled 7075-T6
material. The floor support bulkhead frames are extruded 7075-T6 channel
sections. The frame shear clips are 7075-T6 extruded T-sections.

Intersections:~- A typical intersection, in the cargo compartment, for frames
and longerons, is shown in Figure 10. A 7475-T761 aluminum tear stopper is
bonded under the longeron. This tear stopper is tabbed where it intersects

the frame tee. The frame tee, is cutout at this intersection to allow a
continuous longeron. It is joggled to fit on top of the tear stopper so that
load path continuity is provided through the cutout. A mechanically fastened
shear clip ties the longeron to the frame to provide rolling stability.

On the sides of the fuselage shell where the longerons are wide spaced,
intermediate frames are provided between the 24 inch spaced frames. These
intermediate frames run from longeron 8 to longeron 10 at the cargo floor.

A typical intersection for an intermediate frame at longeron 8 is shown in
Figure 11. The internal mechanical splice plate at longeron 8 is cutout so
that it will fit over the intermediate frame tee when the skin panels are

e e vy x Baa e
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mechanically joined together. Two back-to-back splice angles tie the inter-
mediate frame and the flange of Tongeron 8 *¢yether with 0.188 inch diameter
lockbolts.

A typical intersection for the nose frame and longeron is shown in
Figure 12. The longeron stops short of the frame tee flange against the
skin. This assembly is hot bonded. The frame is then mechanically fastened
to the frame tee with aluminum rivets. Two back-to-back angles mechanically
fasten the flange of the longeron against the skin and the vertical web of
the longeron to the flange of the frame tee.

END CLIP

FRAME

LONGERON

FIGURE 12. TYPICAL NOSE FRAME AND EXTERNAL LONGERON INTERSECTION




A typical intersection for the nose frame and bonded skin splice is
shown in Figure 13, The nose frame tee stops short of the skin doublers.
The skin, skin doublers, and frame tee are hot bonded together. After bond-
ing, the frame is installed with aluminum rivets. Two back-to-back angles
and a filler plate are used to splice the frame tee across the bonded skin
splice. Flush 0.188 inch diameter lockbolts tie the angles to the frame tee,
skin, and skin doublers. Aluminum rivets tie the angles and filler plate to
the vertical frame tee and frame web.

\\\__\

FRAME

BONDED
LONGITUDINAL SPLICE -

A - - FRAME TEE SPLICE

FIGURE 13. TYPICAL NOSE FRAME AND BONDED SKIN SPLICE INTERSECTION

32

e . L I G BN S~o b0 5 EN T S LS AL LSS LA S LU R A AR SR s B R MG IESIE RMNIC RN S G L I




Wing-Fuselage Interface:- The fuselage attaches to the lower wing surface
between station 703 and 847 by means of a titanium T-section flex joint shown
in Figure 14. The fuselage skin bolts directly to this T-section as shown.
Machined posts extend from the front and rear spar frame to pick up trapezoi-
dal panels that bolt to the wing spars. Wing vertical shear and torque are
reacted through these machined posts to the fuselage. Fuselage longitudinal
loads are transmitted through the wing box at the intersection of the wing
ribs and fuselage. Typical fuselage hardpoints for these ties are shown in
Figure 15, for the front spar.
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FIGURE 14. INTERNAL AND EXTERNAL LONGERON WING/FUSELAGE INTERFACE
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r - FRONTSPAR

" ~—— FRONT SPAR FRAME

FIGURE 15. INTERNAL LONGERON FRONT SPAR/FUSELAGE INTERFACE

External Longeron Concept - This concept is identical to the internal

longeron concept with respect to general arrangement (Figure 2), skin panel
sizes and skin gages (Figure 5), skin splices (Figure 7), and wing fuse-
lage interface (Figure 14). The basic difference is that the longerons are
on the outside surface of the fuselage shell which permits simpler design
particularly of the frame-to-longeron intersections. The longerons are
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bulbed T-sections which were selected in preference to a plain T-section be-
cause of the increased compression allowable strength. Typical dimensions

-
L SRR O D RS, »»mzc}m&z..':w,m:sn-;mnh:g

are shown in Figure 16 for a basic external longeron and a longeron at a
bonded splice. Overall longeron height is 1.205 inch for the basic longeron
and 1.708 inch for the splice longeron. The longerons are 7075-T6 aluminum
extrusion material. They are spaced exactly the same as the internal longerons.
Thus, about 13 inches on center for the upper and lower shell and 75 inches :
on the side of the shell.

T N PR

Frames:- Figure 17 shows a fuselage frame that is typical for both the nose
section and the cargo compartment. The frame consists of a continuous ex-
truded T-section outer cap which is bonded to the skin panel and a rolled
section which is mechanically fastened to the extruded T-section by means of
0.188 inch diameter rivets spaced about 1.0 inch on center. Overall frame
height is 4.75 inches. Frame thickness is 0.050 inch in the nose section

and 0.063 inch in the cargo compartment section. Frame material is 7075-T6

P MALp b1 R B0 s 1R,

AT e L e

b

aluminum alloy.

Wing-To-Fuselage Interface:- Fuselage load continuity through the wing cut-
out area is provided at the wing ribs. Typical hardpoints for the external
longeron concept are shown in Figur2 18 at the intersection of the fuselage
with the wing front spar. The centerline hardpoint consists of a machine
tapered T-section which splices to the external centerline longeron and
shears the load directly into the wing skin at the centerline wing rib. Off
the centerline, the wing skin is higher than the fuselage skin at the wing
and fuselage intersection. In this area, the fuselage load is transferred to
the wing by a machined tension T-section spliced to the external longeron.

PRSI Y7 ST SN0 ST PSS PSSV

TTS BANAPE S . * XD DT TP Y S o

OSSR PRV

Honeycomb Concept.- The honeycomb fuselage design concept is shown in

Figure 19. Basic frame spacing in the cargo compartment is 48 inches. This
spacing corresponds with the spacing of the floor support bulkheads. Tear :
stoppers are provided on the internal honeycomb face sheet between cargo
compartment frames for fail-safe requirements except under the wing where
frame spacing is 24 inches as a result of the bending moments induced by
vertical loads on the wing. In the nose area frames are spaced at 18 inch
intervals to resist bending moments induced by cabin pressure in the out-of-
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FIGURE 19. SIDE VIEW — HONEYCOMB CONCEPT

round section.

Skin Panels: - Honeycomb skin panels and skin gages are shown in Figure 20.
Longitudinal mechanical splices were set at maximum distance based r: a
manufacturing constraint which 1imited the bonded panel sizes to an arc seg-
ment of about 96 degrees. Longitudinal bonded skin splices within the bound-
aries of the longitudinal mechanical splices were determined by a vendor
manufacturing constraint on the skin width of 60 to 62 inches for 0.020 inch
thick aluminum sheet. A transverse mechanical splice is provided at the
boundary between the fuselage constant section and double contoured section
to accomodate the separate tooling required for the nose section. Transverse
mechanical splices are also provided at the front spar, rear spar, and drag
link frames so that the external loads from the wing and main landing gear
can be introduced directly intc these frames,
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FIGURE 20. SKIN PANELS — HONEYCOMB

The basic minimum face sheet thickness over the entire fuselage is 0.032
inch for the outer face sheet and 0.020 inch for the inner face sheet. All
skin material is 2024-T3 bare aluminum alloy. The 0.032 inch outer face
sheet thickness was set to minimize foreign object damage. The 0.020 inch
inner face sheet thickness was determined as minimum based on handling consi-
derations. In the nose belly area, outer face sheet thickness was increased
to 0.040 inch because of the higher 1ikelihood of foreign object impact due
to particles impelled by the nose landing gear. In the area of the wing and
aft, the 0.040 inch thick material shown in Figure 20 was required for both
inner and outer face sheets because of strength and cra. . propagation require
ments.
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The honeycomb core is basically 0.80 inch thick hexagonal cell. Core
material is 5056 non-perforated, corrosion resistant aluminum, having a den-
sity of 3.4 pcf corresponding to a cell diameter of 0.250 inch and a cell
wall thickness of 0.0015 inch. Typical core splices and core michine cuts
are shown in Figure 21. At machined cut areas the core is machined on both
sides so all doublers required for the face sheets can be buried between the
outer and inner face sheets. This provides a smooth internal surface to fac-
ilitate the bonding of required intercostals and frames. Core splices were
determined primarily because of handling requirements.

\| INTERNAL

l (TYPICAL)
| : T
g ‘ |
N | s | |
N T I :
| \r\\ — T
- ;T '
S LT T e
L. | R S |
R I R
R R i
k P [ : i
| i R ;
o N . B SR l .I
S BTN T :
330 lu -.}:./: "r..[___. A .. ] ,"l
' o IR TR |
by ?l
INTERNAL AND EXTERNAL : :
MACHINE D STEP : i l
— —— — -~ CORE SPLICE |
eIt Tl MACHINED STEP IN CORE I

FIGURE 21, HONEYCOMB — TYPICAL CORE SPLICES AND MACHINED STEPS
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Typical splices required for the honeycomb skin panels are shown in
Figure 21 & 33. They consist of (1) transverse and longitudinal bonded skin
splices, (2) transverse and longitudinal mechanical panel splices, (3) a
frame T-section splice and (4) a crack stopper splice. For transverse bonded
or mechanical splices, the outside surface skin splice is required to be flush
to minimize drag. This requires an undercut in the outside surface of the
core, Longitudinal splices are not required to be flush on the outside sur-
face. Therefore, the mechanical splice is a simple inner and outer splice
doubler. The bonded longitudinal splice is flush on the inner skin panel
surface so a smooth surface can be maintained for bonding of the frame T-
section to the inner face sheet of the honeycomb skin panel. This requires an
undercut in the irside surface of the honeycomb core. At the direction of
the USAF, in all cases when mechanical fasteners are used to join honeycomb
skin panels, solid aluminum blocks are provided to prevent the entrapment of
moisture and resulting corrosion in the honeycomb core. A1l splice fasteners
are titanium 0.188 inch diameter lockbolts. A1l mechanically spliced doublers
are cold bonded. The faying surface seal for the mechanically spliced
doublers of the full scale demonstration components will be applied per
MIL-S-81733 Type IV-12.

Frames: - A typical frame/bulkhead cross-section for the honeycomb concept is
shown in Figure 23. The frame material is 7075-T6 aluminum with a depth of
4.75 inches and a thickness of 0.050 inches. The frame is attached to the
honeycomb skin panels by means of a T-section hot bonded to the inner face
sheet of the panel. The formed frame is mechanically fastened to the T-
section with 0.188 inch diameter rivets spaced about 1.0 inches on center.
Mechanical splices for the frames and skin panels are staggered as shown

in Figure 24.

Fuselage Cutouts: - Fuselage cutouts are reinforced by a machine edge member

shown in Figure 25 for the crew entrance door. This edge member is bonded
directly into the honeycomb skin panel. Two inner and two outer face sheet
doublers are provided around the cutout in addition to the edge member. One
set of doublers distribures the concentrated corner stresses into the skin
panel. The other set of doublers distributes the overall shear stresses

around the cutout.
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Wing-Fuselage Interface:- The fuselage attaches to the lower wing surface
between stations 703 and 847 by means of a titanium T-section flex joint

shown in Figure 26.  The honeycomb fuselage skin is bolted directly to this
T-section as shown. Machined posts extend from the front and rear spar

frames to pick up trapezoidal panels from the wing spars. Wing vertical shear
and torque are reacted through these machined posts to the fuselage. Fuselage
longitudinal loads are transmitted through the wing box at the intersection

of the wing ribs and fuselage. A typical fuselage hardpoint is shown in
Figure 27, at the center-line of the fuselage. Two machine tapered plates
are bonded inside the honeycomb skin panel along with an inner and outer skin
doubler. Wing splice plates and fittings are bolted directly through the
fuselage skin at hardpoints such as this.

/— LOWER LL WING

LOWER
WING
SKIN —

WING/FUS TEE

B ~— QUTER
//_ FACe
INNER FACE SHEET - SHEET

FIGURE 26. HONEYCOMB — WING/FUSE LAGE
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Weight Analysis

Concept weights were determined on a consistent basis in order to
provide a valid weight comparison. A1l items that varied significantly
between concepts were identified and provided with an accurate weight
variance. These items and those varying relative to a mechanically fastened
Baseline were called "participating structure." “Non-participating
structure” was typical aircraft structure which was essentially unchanged
between concepts. Dummy structure was non-typical aircraft structure.

For the weight cost comparisons, the ADP component was assumed to run
from fuselage station 366 to 992.5. This section of fuselage has a lateral
surface area of 2708 ft2 not including 27 ft2 of doors and windows and the
cutout for the wing.

Weight Comparison of the Bonded Concepts. - The weight breakdown for the
internal, external, and honeycomb concepts are shown in Table 1. The break-
down includes both participating and non-participating structure.

Participating Structure: - The skin and doubler weight for the Honeycomb con-

cept is 12 percent lighter than that of the bonded longeron concepts, Table 1.

Table 2 shows a detailed weight summary of the items which are included in
the splice and attach weight. The honeycomb concept splices are over four
times heavier than the internal or external longeron concept splices. Total
adhesive weights for the ADP component are presented in Table 2 also.

The weight of the inserts and edge members required by the honeycomb
concept are listed in Table 3, and Table 4 presents the detail weight break-
down for the frames and clips. The honeycomb frame weight is significantly
lighter than the other concepts because it only has fifteen frames versus
twenty-seven for the internal and external longeron concepts since all frames
aft of Sta 439 are omitted that are not floor support bulkheads or under the
wing.
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TABLE 3

HONEYCOMB CONCEPT

INSERTS AND EDGE MEMBERS DETAILED WEIGHT SUMMARY

SORWARD ENTRY DOOR FITTINGS

EMERGENCY EXIT DOOR FITTINGS

HELL HOLE DOOR FITTINGS

DITCHING HATCH FITTINGS (2)

MAIN LANDING GEAR POD PROVISIOMS

WING FATRINC PROVISIONS

MAIN LANDING GEAR DRAG LINK PROVISIONS
UNDERWING EDGE MEMBERS

STA. 703 & 847 WING CUTOUT EDGE MEMBERS

TOTAL INSERT & EDGE MEMBER WEIGHT
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WEIGHT (LB)

21
9
7

14

35

35

40

33

34

228
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TABLE 4

g A g =

FRAME AND CLIPS DETAILED WEIGHT SUMMARY

| INTERVAL EXTERNAL !
LONGERON i LONGERON . HONEYCOMB .
FWD OF | STA 439 | FWD OF | STA 439 | FWD OF ' STA 439
STA 439 AND AFT | STA 439 | AND AFT | STA 439! AND AFT
T
FRAME 124 612 124 572 54 286
FRAME TEE 75 0 75 348 34 190
SHEAR CLIP 0 352 0 0 0 0
B'TTERFLY CLIP 0 47 0 0 0 0
FRAME SUPT. INTERCOSTALS 0" 0 17 73 5 26
TOTAL 199 1011 216 993 93 502
{L WEIGHT (LB) 1210 1209 595

intercostals are charged to longerons since they carry axial load.
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Non-Participating Structure: - A weight summary of the items comprising the
non-participating structure 1S presented in Table 5 based on the forward
pressure bulkhead being located at Station 366. Most of these weights are
YC-15 values, changed where practical, to reflect PABST modifications.

Dummy Structure: - Final dummy structure weights are not available at this
time. However, the dummy wing structure (including the over wing barrel) and
the transition structure aft of Station 992.5 are roughly estimated to weigh
6,000 ib and 2,000 1b, respectively. Addition of the dummy structure to the

participating and non-participating structure brings the total ADP component
weight to over 20,000 1b.

Weight Summary: - As shown in Table 1, the honeycomb concept, relative to the

bonded longeron concepts, was approximately 300 1b lighter in skin and
doubler structure and 800 1b Tighter in longitudinal and circumferential
stiffening. However, the honeycomb concept required over 1,000 1b of edge
members and inserts and about 300 1b of adhesive at the two face sheet bond-

lines. Thus, the honeycomb concept was over 200 1b heavier than either the
internal or external concepts.

Baseline Weight. - The final Phase Ib Baseline was defined as the internal
Tongeron concept with mechanical fasteners rather than adhesives as the
primary means of attachment.

As presently designed, the internal longeron concept skin and doublers
would not appear to offer any weight saving relative to the Baseline and the
weight difference between the longerons appears to be small. It was estimated
that the Baseline fail-safe provisions and frames would be 119 1bs. lighter
than the corresponding internal longeron concept items.

The present weight estimate shows that the Baseline was approximately
100 1b lighter than the internal longeron concept.
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TABLE 5

NON-PARTICIPATING STRUCTURE WEIGHT SUMMARY

WING/FUSELAGE ATTACH STRUCTURE

PAINT & MARKINGS

SEALANT-NOSE

FLIGHT DECK FLOOR SUPPORT

FORWARD ENTRANCE DOOR

STA 366 PRESSURE BULKHEAD

FWD ENTRANCE DOOR JAMB

STA 366 FLOOR BEAM

MISC. DOORS, SEALANT & DITCHING HATCHES

EXIT DOOR, HELL HOLE DOOR, MLG FITTINGS & INTERCOSTALS

CARGO FLOOR

WINDOWS

FLIGHT DECK FLOOR PANEL

MAIN LANDING GEAR (STA 847 & 895) AND
FRONT SPAR (STA 703) FORGINGS

KEEL

WEIGHT (LB)
252.

13.
13.
100.
135.
384.
52.
38.
216.
189.
2411,
45.
28.

W O — - O O N W —= 1 b,

1478.
387.8

(]

TOTAL NON-PARTICIPATING STRUCTURE WEIGHT

55

5845.9

PRPPITT-V AR .+



VR A A -t < S A R e e e R P IR TR W A /2
AN e P - 2l > g - > X =3 o = - , AT
4 PR e e S N T S T e P T e, o S A e R, ™ S T e " R
N o
A

STRUCTURAL ANALYSES

In Phase Ib,structural analyses were conducted of the PABST fuselage for
fatigue, fail safe, damage tolerance and static strength conditions. The
external loads were developed to reflect the design weights, payloads and
center of gravity envelopes of the production YC-15. The internal loads were
generated using structural idealizations of the internal/external skin-longeron
concept and the honeycomb concept.
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Design Criteria

A summary of C-15 design weights and basic design parameters applicable
to PABST are shown on Table 6 with the empty weight breakdown on Table 7.
For purposes of external loads the PABST incremental fuselage weight changes
do not significantly effect the overall aircraft weights.

The airplane center of gravity envelope is shown on Figure 28 with the
Operating Weight Empty (OWE).

Maximum Fuel capacity is 77,714 1bs. with 47,097 1bs. in the exposed
wing tanks and 30,617 1bs. in the center wing tank. The maximum STOL landing
fuel weight is 20,000 1bs.

The basic design payloads consist of all vehicles and bulk and palletized
cargo within the aircraft center of gravity envelope up to the design payloads.
The maximum payload for CTOL is 62,100 1bs. and the maximum payload for STOL
is 27,000 1bs.

The C-15 cargo floor loading criteria are shown on Figure 29 with an
explanation of the derivation of each loading.

Figure30 contains vehicle axle load diagrams which were established
from a survey of military vehicles within the STOL and CTOL design envelopes.

The most critical payloads for the C-15 ultimate strength criteria are
tabulated in Table8.
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*Includes cargo loading system (rollers, channel, restraint fittings, et
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TABLE 7

Empty Weight Breakdown

WEIGHT (LB)
Wing 20,747
Horizontal Tail 3,110
Vertical Tail 3,345
Fuselage 26,999
Landing Gear 8,832
Flight Controls 3,427
Propulsion System 21,075
Fuel System 1,242
Auxiliary Power Unit 976
Instruments 1,588
Hydraulics 1,720
Pneumatics 583
Electrical System 1,807
Avionics 2,182
Furnishings 3,986*
Air Conditioning 883
Ice Protection 286
Handling Gear 2,214
Test Instrumentation XX

MANUFACTURER'S EMPTY WEIGHT (MEW) 105,000
OPERATIONAL ITEMS 4,505
OPERATORS EMPTY WEIGHT (OEW) 109,505
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AIRPLANE WEIGHT (1000 LB)
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FIGURE 28. PABST CENTER OF GRAVITY ENVELOPE
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PALLETIZED AND BULK CARGO
TRACKED VEHICLES

sio (3) 8?0
cToL ' _M0LB/N
l |
I (2)
(5) 250 LB/IN I (5)
188 LB/IN [ | | 188 LB/IN (4)
117,5 LB/IN
| |
| | l l
439 703 847 982 1124
(2)
STOL 250 LB/IN
167(1%/IN 167 E;)IN 4
B/ 1 ”7.% ‘.B/IN
| i i
l | | | |
439 703 847 982 1124

MIL-A-008865A
MIL-A- 008865A

[ B

P e N e B e
w
— et et et

4) MILITARY PALLET
5) MIL VAN
FIGURE 29.

FUSELAGE STATION

(2,000 LBS/FT
(3,000 LBS/FT

167. LBS/IN)
250 LBS/IN)

M110E2 HOWITZER (62,100. LBS + 148. IN = 420. LBS/IN)

(10,350 LBS + 88 IN. = 117.5 LBS/IN)
(45,000 LBS + 240 IN = 188 LBS/IN)

CARGO LOADING CRITERIA
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36,000 LBS

439

11,000 LBS

CToL

1124

10,000 LBS

511

18,000 LBS

982

439

l 4,500 LBS

STOL

1124
4,500 185 |

FIGURE 30.

FUSELAGE STATION (IN.)

VEHICLE AXLE LOADING CRITERIA
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TABLE 8
PABST PAYLOADS

DESCRIPTION

PAYLOAD NUMBER

FWD C.G. AFT C.G.

MINIMUM WEIGHT FOR FWD. & AFT C.G.

1

MAXIMUM PAYLOAD (62,100 LBS.)
DUMBELLED
MAX. SHEAR @ FRONT SPAR

PAYLOAD FOR MAXIMUM FUEL (31,155 LBS.)
LUMPED

BULK AND PALLETIZED CARGO

MAXIMUM STOL PAYLOAD (27,000 LBS.)
DUMBELLED
MAX. SHEAR @ FRONT 3PAR

cToL
VEHICLES

62,100 LB. HOWITZER
15K FORKLIFT + 2-1/2T TRUCK (62,000 LBS.)
8T GOER + 2-1/2T TRUCK (61,370 LBS.)

10
11
12

(26,000 LB. AXLE FWD.)
(22,450 LB. AXLE FWD.)

STOL
VEHICLES

27,000 LBS. GOER
27,000 LBS. CARGO CARRIER

13
14
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External Loads

Flight Loads. - Flight Loads were developed for the PABST C-15 fuselage in
conformance with the MIL-A-008860A series specifications for the basic air-
craft design parameters listed in Table 6.

For conditions in which the airframe flexibility is negligible, the
fuselage shears, moments and torques were generated by the Fuselage Loads
program which sums the applied loads at each fuselage check station. In
addition, the Fuselage loads program was used to investigate each of the pay-
loads in Table 8 for discrete gust loading as a function of speed and altitude.
The conditions selected for internal loads analysis are shown in Table 9.

The Continuous Turbulence Analysis program was used to investigate power
spectral density gust loads, but these were not critical for the fuselage.

The limit pressure differential between the pressurized portions of the
fuselage and the ambient atmosphere are

(a) 7 psi + .15 psi valve tolerance + local aerodynamic loads

(b) -1.0 psi collapsing pressure + maximum flight loads

(c) 1.33 x 7.15 psi + 1g ground loads

The local aerodynamic loads were derived from wind tunnel pressure distri-
butions from previous aircraft models. All flight conditions are checked for
full pressurization and zero pressurization.

Fuselage internal loads were developed for Aerial Delivery conditions
during the original YC-15 design. These were not found to be critical forward of
the Station 982 frame. Consequently these have not been included in the
present ADP analysis.

Ground Loads. - The ground loads consist of the landing, taxi, towing and
jacking conditions of MIL-A-008862A for the aircraft design parameters listed
in Table 6 . The Dynamic Landing Program was used for all landing conditions
except for the lateral drift landing which contains the gear loads srecified
in MIL-A-008862A Para. 3.2.9. The Dynamic Landing Program incorporates the
flexible airframe dynamic response and provides time histories of selected
fuselage loads including shears, moments and torques plus the gear loads.
These time histories were reviewed and the critical time points selected for
internal loads analysis. A typical fuselage load time history is shown on
Figure 31.

—- - -
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Fatigue Loads. - A set of fuselage fatigue conditions was established for
internal loads analysis in the following manner. The projected PABST utiliza-
tion consists of 8 missions; however, for fatigue analysis purposes, this was
simplified to the 6 mission "Modified Utilization" in Table 11. A segment-
by-segment mission profile was performed on each flight and the initial taxi
and cruise segments were selected for FORMAT internal loads analysis. For the
cruise segment, the 16 and 2G (or stall) maneuver loads were obtained from
which fatigue spectrum stresses can be obtained. For taxi, only the 1G loads
are derived; the stresses due to incremental load factors are assumed to be
proportional to the 1G stresses

A representative set of payloads was established for each mission. These
payloads are defined in Table 12. Particular attention is paid to axle load
distribution with frame station 559 selected for detailed frame analysis.

Since the payloads for Basic Training Missions 2-1 and 2-2 payloads are
also included in the Typical Cruise Missions 1-1 and 1-2, separate internal
loads were not run for the Training Missions. The major difference between

the cruise segments for the Training and Typical Missions is the pressurization.

FUSELAGE

FLIGHT CRUISE
PROFILE DESCRIPTION P (psi)
1-1A Typical A 7.15
1-2A Typical B

2-1A Training A 4.35 Outb'd.
2-2A Training B 3.2 Return
3-1A Low Alt. Resupply A 0

3-2A Low Alt. Resupply B l

A summary of the fatigue conditions selected for internal load analysis is
on Table 13 .

The pressurization internal loads are obtained separately {condition 87

Table 13) to facilitate the incorporation of different pressurizaticn spectrums
in the fatigue analysis.

Additional cor.litions 85 and 86 contain 1G and 2G maneuver !cads for a
typical flight condition with zero payload to permit superpocition studies,
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TABLE 13
SUMMARY OF PABST CRITICAL FATIGUE CONDITIONS

E

f FORMAT P.L.

f COND Ap FLT WT P.L.

f NO. {(PS1} | PROFILE | DESCRIPTION LB} NO. n,
43 0 11 STOL 20,260 | F1 1
44 0 111 STOL 20,250 | Fs 1.
as ) 1-2 cToL 54,260 | F3 1
46 0 1.2 cToL 54250 | F6 1
47 0 1-2 CTOL 54,250 | F7 1.
a8 0 1-2 cToL 54,250 | F8 1.
49 0 31 sTOL 27,000 | F2 1
50 0 31 STOL 27000 | F9 1
51 0 3-1 STOL 27000 | F10 | 1
52 0 34 STOL 27,000 | Fi1 1.
53 0 32 cTOL 62,060 | F4 1.
54 0 32 cToL 62,000 | F12 1.
55 0 32 cToL 62,000 | F13 | 1.
56 0 32 cToL 62,000 | F1a | 1
57 715 141 sToL 20,250 | F1 1.
58 715 141 STOL 20,250 | F1 1.7
59 715 1-1 sTOL 20,250 | F5 1.
60 7.15 1-1 STOL 20,250 | Fs 17N
61 718 12 cTOL 54,250 | F3 1.
62 715 12 cToL 54,250 | F3 175
63 715 12 cToL 54,250 | F6 1
64 715 1-2 cToL 54,250 | F6 175
65 715 12 cToL 54,250 | F7 1.
66 715 12 cToL 54,250 | F7 1.75
67 715 12 cTOL. 54,250 | F8 1.
68 715 12 cToL 54,250 | F8 1.75
69 0 31 STOL 27,000 | F2 1.
70 0 31 sSTOL 27,000 | F2 1996
7 0 31 sToL 27000 | F9 1
72 0 31 STOL 27,000 | F9 1996
73 0 341 $TOL 27,000 | F10 1
14 0 31 STOL 27000 | F10 1996
75 0 3-1 STOL 27,000 F11 1.
6 0 31 sToL 27,000 | F11 1996
77 0 32 CTOL 62,000 | Fa 1
8 0 32 cTOoL 62,000 | F4 199
79 0 32 cTOL 62000 | F12 | 1.
80 0 32 cToL 62000 | F12 | 199
81 0 32 cToL 62,000 | F13 1
82 0 32 ciot 62,000 | F13 199
83 0 32 cToL 62,000 ' Fi4 )
84 0 32 CTOL 62000 | F14 199
85 115 12 CTOL 0 l 4] 1
86 715 12 CTOL 0 0 2
817 115 1P 0
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Internal Loads

The PABST ADP was analyzed in the same manner as a conventional aircraft
fuselage. Internal loads were generated using the standard McDonnell Dougias
FORMAT computer program. The basic approach was to replace the actual struc-
ture with a series of bars, panels and membrane elements with the load
capabilities shown in Figure 34,

The external loads were applied at the nodes and equilibrium and compat-
ibility equations were generated for each node and element in terms of the
unknown internal forces. These forces are solved by matrix inversion. The
program also used the FORMAT capability to generate the margins of safety for
input allowable stresses including the interaction effects of biaxial and
shear stresses.

A computer generated diagram of the overall idealization is included in
Figure 35, As shown, typical shell structure was idealized by a series of
bars for the longerons and frames and shear panels for the skin. For the wing
attachment and landing gear frames, both inner and outer caps were included
along with all major structural connections. The floor, wing box and bulkheads
were all included in a similar manner.

Two idealizations were created

(1) Internal and External Longerons Concepts

(2) Honeycomb Sandwich Concept

Both idealizations had identical geometries; the only difference was the
section properties for the longeron and sandwich shells. The longerons carry
no bending or transverse shear whereas the sandwich elements include transverse
bending and shear stiffness. For the two longeron concepts, identical section
properties were assumed allowing the use of a single idealization.

A list of the ultimate flight, ground and fatigue load conditions are
included on Tables 9,10 and 13. Loads were applied at the node points to
duplicate the airloads, nertias, wing and landing gear loads.

The internal loads were generated directly onto microfilm for all ultimate
and fatigue conditions. A set of output on standard computer forms is also
available for reference.
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Ultimate Failure Mode - Metal

A cnlonb

L At

An auxiliary to the FORMAT internal load program has been used to derive
the ultimate stresses and margins of safety in the metal. This stress program
uses the loads and section properties from the internal load program to
determine the three most critical margins of safety for axial, shear and

principal stress in each bar and panel member and additionally for interaction
between longeron axial load and skin shear. The results of this program out-

APEuradoc s ter vl ha s

put are summarized by loading condition type in Figure 36 and the stress and
margin of safety values for selected locations are shown in Figure 37.

A set of the complete program output is also available for reference.
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Damage Tolerance
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This section includes the damage tolerance requirements, analysis methods,
material property data, PABST structural concept analyses and analysis-test
correlation. Information applicable only to adhesives is presented separately
within each subsection from the information on the assembled bonded metallic
structure, called "metal" in this section for convenience.

A flow chart of the damage tolerance analysis procedure for the metal
structure is shown in Figure 38. %

The criteria for the metal structure and for the adhesive bonds for the ;

Phase 1b of the PABST study are presented. The additions to the criteria §
that will be made for Phase Il are briefly listed at the end of the :
subsection. ;

Applicable Documents. - The following documents apply to the extent specified:
MIL-STD-1530(USAF) "Aircraft Structural Integrity Program, Airplane Require-
ments" (1 September 1972) except for sections: 4.2d, 4.2e, 5.1.1, 5.2.3,
5.2.7, 5.2.8, 5.2.9, 5.2.10, 5.2.11, 5.3.1.2, 5.3.4, 5.3.4.1, 5.3.4.2, 5.3.5, :
5.3.5.1, 5.3.5.2, 5.3.5.3, 5.3.5.4, 5.3.6, 5.3.6.1, 5.3.6.3, 5.3.7, 5.3.8,
5.3.8.1, 5.3.8.2, 5.4 and its subsections and 5.5 and its subsections. Temp-
erature and sonic fatigue criteria for PABST, to be used in lieu of these
MIL-STD-1530 exceptions, are to be defined and will be implemented during
Phase 1I.

[CLENNE LT TR DR

:
i
§
£
H

MIL-A-83444 "Airplane Damage Tolerance Requirements" except for Sections
3.1.1.1b, 3.1.1.3 and its subsections, 3.1.3 paragraph on fail safe structure,
3.2.2 and its subsections, and 3.2.3 and its subsections.

MIL-A-008866A "Airplane Strength and Rigidity, Ground Tests" except for
Sections: 3.6 (except as modified for STOL by McDonnell Douglas Report

MDC J6066), 3.10, 3.11, 3.12, 3.13, 3.13, 4.3

MIL-A-008867A "Airplane Strength and Rigidity, Reliability Requirements,
Repeated Loads and Fatigue" except for Sections: > ".3f, 3.2.3g, 3.3.4.lc
except for environment, 3.3.4.2 environmental effects, 3.4.1.1, 3.4.4.2,
3.4.5.2, 3.4.5.3, 3.4.5.5 except real time and environment, 3.4.5.6, 3.4.5.9,
3.5.3, 3.7, 3.7.1, and 3.8.
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Fatigue Criteria. - The PABST fatigue criteria shall incorporate a utilization
model considering all pertinent loadings arising from preflight taxi, post-
flight taxi including effects of reverse thrust, landing impact, vertical and
horizontal gusts, flight maneuvers, pressurization, thermal loads, ground
handling loads and the influence of the environment on the strengths of the
various materials.

Service Life. - The design service life and design usage of PABST are shown
exclusive of scatter factor.

Flight Service Life 30,000 Hours and 12,507 Flights

Pressurizations 19,014
Landings, Full Stop 29,977
Touch and Go's 16,127

The projected equivalent utilization for fatigue analysis of the PABST ADP
Component is given in Table 11.

Design Fa*tigue Life. - The design fatigue 1ife is the service life defined
above multiplied by a scatter factor of 4.0.

Service Loads and Environment Spectra. - The basic inputs to define the cyclic

loads spectra shall be as defined in MIL-A-008861A and MIL-A-008866A modified
to incorporate the higher sink rates associated with STOL type aircraft. For
the metal structure in Phase Ib, the environment used was room temperature and
laboratory air. See the adhesives subsection for the adhesives environment.
In addition, refer to the Phase II list at the end of the subsection.

Slow Crack Growth Damage Tolerance Criteria - Metallic Structure. - PABST

safety of flight structure shall be qualified as slow crack growth under the
appropriate sections of MIL-A-83444 and shall be designed so the possibility
of catastrophic failure will be extremely remote. Compliance with these
criteria shall involve residual strength and crack growth analysis and/or
tests. In addition, the structural design and analysis shall account for the
fail safe criteria in the following paragraph.

Fail Safe Criteria - Metallic Structure. - The PABST fuselage shall have a fail

safe capability equivalent to that of the DC-10 commercial airplane. The fail
safe requirements of MIL-A-83444 Section 3.1.1.1b, 3.1.1.3, 3.1.3, 3.2.2,
3.2.3 and their subsections will not be met since slow crack growth was used.

87




der O 0 SRS S T o b LR et g Ua kAL A WA A S V0 | U S L A il N s

The structure shall be capable of withstanding (1) 1imit load with a two bay
crack and (2) the maximum average internal member load occurring in 20 1ife-
times, or limit load which ever is less, for foreign object damage as speci-
fied in the following subsections.

V-4 LS ik,

Longitudinal Cracks: - The structure with a longitudinal crack shall be able
to withstand (1) a two-bay skin crack or a skin-to-longeron disbond and the
center frame (or splice) intact, and (2) a 15 inch long foreign object damage
skin crack with both the center frame (or splice) and crack arrest member

(if present) failed. For the first requirement, at least the skin crack
adjacent to a frame (or splice),where high stresses are induced from frame
bending and pressure, shall be considered. A1l cracks considered shall be
assumed to propagate in both directions.

a2 o T SR A U S0 e

For honeycomb structure, the longitudinal skin crack shall be in the
face sheet on the side opposite the stiffening members. For foreign object
damage, both face sheets and the core are cracked through a common plane.

circumferential Cracks: - The structure with a circumferential crack shall be
able to withstand (1) a two-bay crack with the center longeron (or splice)
intact, and (2) a 15 inch long foreign object damage crack with the longeron
or splice and crack arrest member (if present) failed. All flaws shall
propagate in both directions.

For honeycomb, the damage shall be as specified in the longitudinal
cracks subsection.

Damage Tolerance Criteria - Adhesive Bond Areas. - The requirements of
MIL-A-83444, for metal and mechanically joined elements shall bhe supplemented
with the following requirements for the design of adhesive bonds joining two
or more elements of the structure. Compliance with these criteria shall be
developed by analysis and/or test. The analytical damage tolerance assessment
shall be confined to residual strength estimates. The analyses shall assume
the presence of flaws in the bond placed in the most unfavorable location and
orientation with respect to applied stress and material properties. The
experimental investigation shall be Timited to distinguishing between flaws
which grow and those which do not. Thermal and humidity effects shall be

accounted for.

88

e o N O N U T T U % yPT




PB4, 5 Y TR TN TP R o SR S g i W D D T A S AR RN = T R T T e T

Entire panels or parts which are improperly processed, i.e. parts with
global damage, shall be rejected. Parts with local contamination or flaws
shall be reworked to a quality in which the flaws shall not grow to
unacceptable sizes within two airframe 1ifetimes.

Initial Flaw Sizes: - An initial flaw shall be assumed to exist in each and
every bond in its most critical location including those highly stressed areas
resulting from variable bondline thickness. The size of the flaw shall be the
greater of (1) the minimum detectable size for the NDI technique used on the

bond, or (2) the smallest flaw remaining after a larger flaw has been repaired.

Each flaw shall be analyzed for residual strength independently of all other
flaws, either in the bond or metal. Initial flaws shall be located so there
is no interaction between them.

Bond Irspectability: - The detail design shall minimize the use of uninspec-
table bonds and, wherever practical, shall be such as to force the first
evidence of failure into a visible or easily inspectable area. Techniques,
such as staggering the ends of the overlaps, shall be used to facilitate
inspection of the bonds. Each uninspectable bond shall be limited in extent
to a subcritical size.

Flaw Growth in Bonds: - Flaws in bonds induced in service shall not grow from
initial sizes defined above to critical size within two airframe lifetimes.
A11 flaws large enough to grow in service shall be repaired prior to delivery
of the aircraft to preclude corrosion. In addition, bonds which contain sub-
critical flaws in areas subject to corrosion shall be sealed to provide
environmental resistance.

Fail Safe Capability: - The fail safe capability of the bonded structure shall
be demonstrated by test and/or analysis. The structure shall be capable of
withstanding (1) 1imit load with each of the following two-bay disbond config-
urations:

(a) a two bay disbtond in only one side of a double lap splice,

(b) a two bay disbond in a single sided bonded splice,

(c) a two bay longeron-to-skin disbond, and

(d) a two bay shear-clip-to-skin or crack-arrest-member-to-skin disbond;
and (2) the maximum average internal member load occurring in 20 lifetimes,

but less than limit load, for impact or the foreign object damage specified as:
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(a) a 15" disbond on hoth sides of a splice, and

(b) a 15" long foreign object damage skin crack with both the center
frame (or splice) and the crack arrest member failed or with both the
Tongeron (or splice) and crack arrest member failed as applicable.

Additional Criteria for Phase II. - The following criteria areas will be added
in the Phase II portion of the PABST program: (a) the effect of thermal and
chemical environments on metallic structure (note: the the effect on adhesives
is included in Phase Ib), (b) the effect of sonic fatigue, (c) the effect of
sustained load flaw growth in the metallic structure.

Stress Spectra Generation. - The internal load (stress) spectra for the design
concept check points were generated for airplane usage as defined by the PABST
flight profiles. The profiles were based on expected C-15 missions. These
flight profiles were the basis of a series of load conditions applied to an
internal loads mathematical model which gave stresses for each load condition.

These stresses, at critical fuselage locations, were used to develop the
applied stress spectra. The stresses at these locations were used to generate
tables of stresses and Ao/g for each segment of the flight profiles. The
tables ware input to the Douglas A6PB spectra computer program which outputs
tables of stresses and cycles. The stress and cycles tables were then used
to generate the stress spectra input to the Douglas crack growth time history
computer program E1C9. An example of the EI1C9 spectrum for the external
concept check point B is shown in Table 14.

Damage Tolerance Analysis Methods (Metals). - The crack growth and residual
strength analyses of the metallic structure were based on classical linear
elastic fracture mechanics in which the model consists of a symmetric crack
growing from a through-the-thickness flaw in an infinite sheet. A basic
assumption made is that the local stress conditions at the crack tip are
defined by the local stress .intensity K, where:

K=ov7a
gross area stress remote from the crack tip, psi

a = half crack length, inches
The general eguation for stiffened thin-walled structure of finite size is:

k:a,/"a B‘ﬁ2o.oﬁN

where the 5N terms are modification factors including the following,
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TABLE 14

Modified Spectra for External Longeron Concept, Check Point B
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TABLE 14 (CONTINUED)

Modified Spectra for External Longeron Concept, Check Point B
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as applicable:

F (3/r)
N
A

a

"

Bowie correction for symmetric or asymmetric cracks at holes
Finite width correction for eccentric cracks (Reference 1)
Finite width correction for single edge cracks (Reference 1)
Liu back surface correction factor for cerner flaws(Reference 2)
Kobayashi factor for deep surface discontinuities (Reference 3)
Swift factor accounting for the effect of stiffening on a
cracking sheet (Reference 4)

Correction factor accounting for the effect of bulging on a
cracking curved sheet due to pressure. (Reference 5)

Effect of non-uniform stress distribution, from the pressurized
uncracked stiffened cylinder, on a longitudinal skin crack.

See Figures 39 and 40,

Knock down factor for the effect of the skin bending stress

on a circumferential crack near a frame in a pressurized shell.

The damage tolerance analyses were based on the Hart-Smith method of
predicting the stress distribution in a pressurized stiffened cylinder,
This method is more accurate than the classical solution since:

Figure 39,

(a) the distortion under load included in shell buckling theory is
accounted for,

(b) the deflected shape is defined by non-oscillatory exponential decay
functions,

(b) the correct frame stresses are obtained by using the junction
stresses between the skin and frame determined by the skin bending
moments, and

(d) the axial stiffener influence on the skin sziresses is accounted for
(through Poisson effects).

The crack growth time histories of the cracked structural members

analyzed were calculated using a Douglas computer program that is an expanded
version of the Air Force CRACKS program, and da/dn vs AK material data.
Residual strength was caiculated using critical stress intensity, i.e. kc, data.
These material data are discussed in a subsequent subsection.

It should be nctea that in the Phase Ib analysis, all of the metallic
structural components ard the bond were assumed to be elastic for the damage

tolerance analysis of the metal structure. An on-going research (IRAD)

93

2 Lo

AR B YT R A T MR T T e R T e L e Y e LI T T D ok S e L S e B ok vk Iy "Sj

3 T A
A
£
i




T R QTP T 0T GaC s & Lot i

HIAANITAD GINTASILS AIZIYNSSIUd V NI NOILNBIYLSIA SSIHLS "6€ IHNDI4

NOU3IONO1
INVYS

/

94

xtr
<« o
YN

.
.
£
[
»
L4
[
s
[
[
[
[
L
L
[
.
.
B e T

5

v g e

e Rt s D R P Py




i e A e L O C R oMt R il LA 2 xS

HOLOVd NOILNSIYLSIA SSIHLS WHOLSINNNON "oy 3HNOLS

308/ 0=(2'D'C0'T0) } — N o
1

+ ————\ NOILISOd¥3dNS *

95

HOVOUddVY NOILONNA S.N33HD *

B R o S T o P T

wu NOILVZIINSS3dd O1 INA SSFULS WHOLINN-NON °




effort on metallic structure and PABST analysis of adhesives indicate that the
use of linear elastic fracture mechanics for the cracking member with an
elastic-plastic capability for the adhesive and the attached structure would
improve the accuracy of the analysis. This recommendation was corroborated by
a PABST flat stiffened panel test.

Material Data-Metals. - The da/dn vs AK curves for Phase Ib were taken from
data available in the literature, primarily Battelle data. Both average and
upper bound curves were prepared for the following aluminum alloys:

1) 2024-T3 both bare and clad sheet,

2) 7075-T6 clad sheet,

3) 7075-T73 extrusion, and

4) 7475-T761 bare sheet.
A decision was made that the curves for all aluminum alloys and R values wouid
pass through 10'8 at AK = 2 ksi /in. This decision was based on available
NASA data for 2219 aluminum and had customer concurrence.

An example plot of da/dn vs AK data is shown in Figure 41 for 2024-T3
bare sheet. A da/dn vs AK plot for 2024-T3 and 7075-T6 alloys for R = 0 is
shown in Figure 42 to indicgte the shift in the curves that occurs for a
change in alloy.

It should be noted that because of the log-log scale of the plots, small
A K displacements of the curves can lead to significant changes in da/dn
magnitude which can greatly affect the analytical determination of crack
growth time history. For this reason, current da/dn vs AK data will be

reviewed for Phase Il to incorporate any recent data from Douglas (IRAD) tests
and from the literature.

Kc Values: - The following Kc values were used in the analysis of the test

specimens and design concepts.

Aluminum Applicable Temp ' Ke (Obtain:d from
Alloy Analysis °F Douglas IRAD tests)
2024-T3 Bare Test RT 130

Concept -65 130
7075-T6 Clad Concept -65 40
7475-T761 Bare Test RT 120

Concept -65 109
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Retardation: - Four flat unstiffened center-cracked panels were tested to
measure retardation in crack growth due to infrequent high loads under spectrum
loading and to establish a retardation model for crack growth analysis. The
specimens were:

Number of Specimen Specimen Test
Specimens Thickness Material Temperature
] 0.05 2024-T3 Bare Room Temperature
1 0.05 7475-T761 Bare Room Temperature
1 0.05 7475-T761 Bare -65°F
1 0.05 /075-T6 Clad Room Temperature

The spectra for the 2024 and 7475 specimens is shown in Figure 43. The
spectra for the 7075-T6 specimen was:

o R Cycles Ao
max Specteum
13500 0.1 1 12150
10750 0.3 168 7525
8062 0.7 584 2419
13500 0.1 1 12150
8062 0.7 584 2419
10750 0.3 168 7525

The results for the 2024-T3 specimen test are shown in Figure 43 with
analysis based on the Willenborg retardation model with the factors shown. The
test data fell to the right of th: Willenborg curve for R = 1.0 for all room
temperature tests. For the cold temperature test, the test data fell to the
left of the Willenborg curve for R = 0.6. Chemical analysis of the 7075-T6
specimen showed it to be close to the specification for 7475 alloy and analysis

based on 7475 da/dn vs AK data showed better agreement with test data than
the 7075 material data did.

Attempts to correlate the data with existing retardation models was not
successful. A retardation factor of 0.8 to 0.9 and a Willenborg model based on
previous Douglas experience was therefore used for PABST.
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Concept Analysis (Metals). - The three concepts described in the Design q
Concepts Section were analyzed for the damage tolerance requirements using

the analysis methods and material data described in the previous subsections.
The critical points on the fuselage used for analysis were selected on the
basis of the internal loads as described in the following paragraphs. Margins
on life were obtained for structure analyzed for slow crack growth based on
the Forman equation for the da/dn vs AK curve,

£ Sader Aoat

da C (AK)n :
dn (1-—R)KC - AK

a = half crack length

N = cycles

R = Stress Ratio

KC= Critical stress intensity
K

c

= Difference in stress intensity
= Material constants

In the region of the initial crack where the contribution to the total
lTifetime is greatest, AK is much less than Kc‘ For efficiently designed
structure, the margin is low and the [(I-R)KC - AK]/C term can be assumed to
be relatively constant in the applicat’e da/dn vs AK region since the region

is small enough to permit a linear approximation. A relationship between life
and stress can then be obtained which is:

N 1/ N failure 1/
9 <= 9% (—20 n or %allowable = “Tfailure N n
N1 criteria
N failure ]/n -1
margin on Life = N :
criteria

Internal Longeron Concept: - The critical points for the analysis of the
internal longeron concept are shown in Figure 43. A1l of the points were
in the 0.05" thin skin region. Critical point A was selected as a high axial
and pressure tensile stress area in the wide spaced longeron region. Critical
point B was in the highest axial and pressure tensile stress area. Critical
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point C was in an area subjected mainly to pressure stress but was needed to
check the adequacy of the close spaced frame/wide spaced longeron geometry in

the nose.

Critical point D was under the floor in the region with highest
axial compression as well as the pressure tensile stress.

The axial compress-

ion tends to open a longitudinal crack increasing the effective crack tip

stress intensity.

The results of the analysis are shown in Table 15.

design of the wide spaced longerons
fail safe criteria for a circumferential crack was not met.

Figure 44 at

For the original

critical point A, the

One fail safe

strap was added between each pair of longerons as shown in the Design Con:epts

section.

in the sensitivity analysis subsection.

TABLE 15

The method of determining the strap stiffening and area is discussed

INTERNAL LONGERON CONCEPT DAMAGE TOLERANCE ANALYSIS SUMMARY

Critical Slow Crack Fail Safe
Point Growth
One Bay Crack Two Bay Crack- 15" Foreign Object
Center Stiffener | Damage-Center
Intact Stiffening Broken

Point A 3% Margin on Original design Original Design

Circumferential Life, Original did not meet did not meet

Crack Design Criteria. Fail Criteria. Fail safe
Safe Strap added | Strap added.

Point B 9% Margin Criteria met Criteria met

Longitudinal on Life

Crack

Point B 0% Margin Criteria met Criteria met

Circumferential on Life

Crack

Point C 13% Margin Criteria met Criteria met

Circumferential on Life

Crack

Point D 8% Margin Criteria met Criteria met

Longitudinal on Life

Crack

With the addition of the straps, critical point B becomes the area of
Towest margin on life, for the circumferential crack.

DUTOTTROND
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criteria is critical for a one bay crack. The associated skin crack growth
time is shown in Figure 45. The applicable stress spectra is shown in
Table 14 and was used with a Willenborg retardation model and 0.9 factor.
The fail safe checks are shown in Figures 46 and 47, It can be seen
that (1) The two bay-center stiffener intact criteria was met since the panel
did not fail until a half crack of 19.2 inches was reached, and (2) the 15"
foreign object damage crack fast fractured then arrested at a half crack of
14.9 inches. The panel failed when a half crack of 15.6 inches was reached.

RS FIRTIN N

PRI ZX]

SOV

External Longeron Concept: - The internal loads for this concept were the same
as for the internal longeron concept. The critical points for analysis were
at the same locations, see Figure 43 . The results of the analysis are

e B AT C A A i EA s AR 505 a0 530 B £

12-
INTERNAL LONGERON CONCEPT
CRITICAL POINT B TWO LIFETIMES '
n UNINSPECTABLE 3
104 §
a, %‘
HALF  o. FENER :
CRACK, STIF 3
IN. i
*1
| ad ‘3
74 ;
61 *TWO DEPOT
INSPECTION PERIODS

5- 1]
4 :
3-1 5
b
29 :
IN. CRACK ' ;
2-IN, . E
L 15,000 | ;
HOURS "‘. :

o ] V ) 1) 1 T L]

0 10 20 30 40 50 60 70

FLIGHT HOURS BY 10- 3

FIGURE 45. CRACK GROWTH TIME HISTORY FOR A CIRCUMFERENTIAL ONE BAY
CRACK, INTERNAL LONGERON CONCEPT
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shown in Table 16 . An analysis of an initial crack in the frame at critical gﬂ
point B showed the case of the initial crack in the skin was more critical. :§
This result confirmed the same conclusion for frame analyses performed during :
the initial screening of concepts early in Phase Ib. The longerons were also §
less critical than the skin in the screening analyses. i

TABLE 16 :

&

EXTERNAL LONGERON CONCEPT DAMAGE TOLERANCE ANALYSIS SUMMARY §
Critical STow Crack Fail Safe é
Point Growth 2
One Bay Crack Two Bay Crack- 15" Foreign Object :
Center Stiffener | Damage-Center J
Intact Stiffening Broken z
Point A 3% Margin on Original design Original design
Lifg, Original Marginal. Fail Marginal. Fail
Design Safe Strap Added.| Safe Strap Added.
Point B 10% Margin Criteria met Criteria met
Longitudinal On Life
Crack y
Point B 0% Margin Criteria met Criteria met ;
Circumferential 0n Life a1
Crack 5
Point C 12% Margin Criteria met Criteria met ;
Circumferential On Life A
Crack
Point D 8% Margin Criteria met Criteria met E
Longitudinal X
Crack p
Honeycomb Concept: - The critical points for the analysis of the honeycomb %
concept are shown in Figure 48, As shown in the Design Concept section, %
almost the entire honeycomb fuselage has an 0.032 inch face sheet on the out- 3
side and an 0.020 inch face sheet on the side with the frames and fail safe ‘
straps. Critical point A was in the highest axial and pressure tensile stress ¥
area. Critical point B was under the floor in the region with highest axial ?
compression as well as the pressure tensile stress. Since the geometry is ;;
constant throughout most of the honeycomb fuselage, these are the only 5
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critical points needed.

The results of the analysis are shown in Table 17. The model for the
slow crack growth analysis and the fail safe analysis of a two bay crack with
center stiffener intact is shown in Figure 49. For both of these analyses,
the panel was assumed to act like an unstiffened honeycomb sandwich; i.e.,with
no frames or straps, A flat honeycomb panel fail safe test in Phase Ib showed
good agreement with this analysis, see the analysis test correlation sub-
section. The model for the 15 inch foreign object damage, (in which the
center frame, core, and both face sheets are cut) was: (1) an unstiffened
center cracked face sheet, (2) a cracked fact sheet stiffened by frames and
straps, and (3) no contribution by the core.

TABLE 17
HONEYCOMB CONCEPT DAMAGE TOLERANCE ANALYSIS SUMMARY

Critical Slow Crack Fail Safe
Point Growth
One Bay Crack] Two Bay Crack- 15" Foreign Object
Center Stiffener | Damage - Center
Intact Stiffening Broken
Point A 52% Margin Criteria met Criteria met
Longigudina] On Life
Crack
Point B Criteria met Criteria met Criteria met
Longitudinal
Crack

Notes: 1. Crack in face sheet on side opposite to stiffening.
Analyzed as unstiffened honeycomb panel with one cracked face sheet

2. Both face sheets, core and center stiffener cut.

3. Circumferential crack less critical than Tongitudinal crack.

The longitudinal crack at point A was critical for slow crack growth. The
associated crack growth time history is shown in Figure 50. The spectra was
constant ampTitude from zero to full pressure which is conservative. The fail
safe checks are shown in Figures 51 and 52. The criteria was met for
both cases.
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Sensitivity Analysis [Metals). - A sensitivity analysis was made for each of
four parameters to guide the design of various PABST concepts and to evaluate
the impact of a change in basic material data. The four parameters were:
stress level, bonded strap spacing, bonded strap area, and da/dn vs AK
material data. The methods described in the Damage Tolerance Analysis Methods
Section were used in the analyses.

It should be noted that the effect of bonding itself, compared to riveting,
was determined early in Phase Ib. The associated modification factors
accounting for the effect of stiffening on cracked sheet for elastic structure

2oy

2% Sz'":"*"

RN e W

were compared. The result is shown in Figure 53. Since the factor ic
related directly to the stress intensity k, see Damage Tolerance Analysis
Methods Section, the improvement in residual strength provided by bonding the
stiffening is clearly evident.
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Effect of Varying Stress Level: - The sensitivity of stress intensity (k) to
stress level was determined for both the skin-bonded stiffener design concepts
and the honeycomb concept.

The internal and external longeron concepts were considered to be repre-
sented sufficiently for this analysis by the geometry of test specimen N21 and
the crack DT4, as shown in Figure 54. Three stress levels were selected: (a)
the longitudinal stress due to pressure only, 11,180 psi, (b) the longitudinal
stress due to pressure added to the full skin bending stress, 24,347 psi, and
(c) the average of the two. The first and second stress levels represent the
lower and upper bound values. The results, see Figure 55, show that the
structure is very sensitive to high stress levels. In this example, a 50%
increase in stress from the lower bound decreased the life by 84%.

Honeycomb is similarly affected, Figure 56. The analysis performed was
for test s~ cimen 30A, which has the same geometry as the honeycomb concept.
As stated previously, honeycomb crack growth analysis considers that the
structure acts like an unstiffened honeycomb panel unaffected by the frames
and straps.

Effect of Varying Bonded Strap Spacing: - The effect of varying strap spacing
on residual strength was determined for the skin-bonded stiffener concepts.

A circumferential crack parallel to and close to the frame at critical point
A for the external longeron concept, Figure 44 was analyzed with one, two,
and three crack arrest straps between the wide spaced longerons. The result
of decreasing strap spacing is to increase residual strength as shown in
Figure 57. It should be noted that in the analysis for all three cases, the
strap area was not sufficient to keep the strap from breaking before the two
bay-center stiffener intact fail safe criteria was met. However, it is clear
that a further increase to four straps would result in the criteria being
satisfied with no increase in area.

Effect of Varying Bonded Strap Area: - The effect of varying strap area only
on residual strength was also determined for the critical point A case

discussed above with the strap spacing fixed (one strap). The results are
shown in Figure 58. An increase in area to 0.213 square inches provided
sufficient residual strength to meet the fail safe criteria. Additional
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analysis would be required to determine the best geometry for cost and weight
by varying both spacing and area.

Effect of Varying da/dn vs AK: - The sensitivity of crack growth time history
analysis to da/dn vs AK material data noted in the Material Data Section was
studied. An analysis was made of a flat unstiffened center-cracked 7075-T6
sheet which was 48" wide and 0.05" thick. The initial 0.50" crack was grown
analytically by spectrum load. The PABST curves and a set of curves displaced
at the lower end from PABST data were used. Figure 59 shows the placement
of the curves for R = 0 only. The resulting crack growth time histories are
shown in Figure 60. It should be noted that the AK value associated with
maximum growth from the initial crack size was 6686 at R = 0.3. (The life
depends primarily on the growth period associated with the starting crack).
For this geometry and material, the decrease of initial da/dn from 1.5 X 10~
to 6.0 X 10'6 for the initial AK value decreased the life by a factor of 3,
Figure 59. This sensitivity study is especially significant since there is
Jittle data below AK = 5 x 10'7 for aluminum alloys. This is an important
region for PABST since the small MIL-A-83444 crack sizes and low fuselage
stresses place much of the structure in this region.

Analysis-Test Correlation (Metals). - A comparison was made between test panel
analysis and the test data from the design verification tests of the internal
longeron and honeycomb concepts to check the analysis methods. The panels were
analyzed using the methods described in the Damage Tolerance Analysis Methods
section, including the appropriate modification factors.

Internal Longeron Concept: - Two large stiffened panels with the internal
longeron configuration were tested.

The first, a flat panel loaded by uniaxial tension, is described in
Structural Test Section specimen N30A. The test panel failed prematurely from
fatigue in the longeron cutout region. Only about two inches of growth from
the 0.25 inch initial damage tolerance cracks cut into the panel was obtained.
The experimental crack growth time history for the one bay damage tolerance
crack is shown in Figure 61 along with the analytical data. The agreement
is fairly good. The unconservatism can be corrected by adjusting the da/dn
vs AK material data a small amount in the low AK region as was discussed

previously.
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The second panel was a curved specimen tested under pressure to verify
the effects of biaxial stress on the design. The location of the damage
tolerance cracks and the residual strength cuts in the 110" X 168" panel are
shown in Figure 54, The test is described in Structural Test Section
specimen N21. The comparison between analysis and test for the longitudinal
one bay cracks DT1 and DT2 is shown in Figure 62. The analysis of both
cracks was identical, i.e. no skin bending at the longeron assumed. Reasonabtle
agreement for crack DT1 was obtained except in the knee of the curve. An
adjustment in the da/dn vs AK curve will be studied in Phase II for this case
also since the effect of the stiffener is still four to five inches away.
Agreement for the DT2 crack was poor. The knee of the experimental curve had
not been reached by the time the crack was patched to allow other testing. It
had been thought that DT2 would grow more rapidly than DT1 due to the bending
of the skin from the pressure "pillowing" of the skin at the longeron,
Figure 39, and from the more severe bulge condition wherein the longeron

EPIS TP AY SN = T 373

v fin Tor fm vk anMmE . 0f S AL

2350 Snod¥s £

holds one side of the skin while the other side bends outward thus increasing
the crack tip stress intensity more than for DT1, where the bulging is
symmetrical. The test results, however, indicate a decrease in stress
intensity from that of DT1. Current thinking is that the longitudinal stress
in the skin is higher at the longeron than in the center of the bay. The }

problem will be studied further in Phase II. :
It should be noted that it does not appear to be necessary to make :
corrections to the method of analyzing the hoop stress distribution ir . ° §

pressurized stiffened shell. The hoop stress at the center of a bay was
recorded by the strain gages as 14,287 psi versus 14,113 psi by ana:_sis. The
hoop stress in the skin at the frame was recorded by the strain gages as ¥
9558 psi versus 9898 psi. This is good agreement considering manufacturing
tolerances, etc.

The comparison between test and analysis for crack DT4 is shown in
Figure 63, The shift in da/dn vs AK curve mentioned above will be used
to adjust some of the unconservatism in the analysis at the beginning of
crack growth. The crack was patched at 31,290 cycles so that fail safe tests
could be run. The patch was not sufficient to prevent the crack from opening
during the fail safe loading. The change in the curve in Figure 63 from the
patching to about 45,000 cycles appears to be from retardation. The fail safe
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load with retardation will be added to the analysis in Phase II to check
correlation,

The residual strength test results for the two bay crack with center
stifrener intact are shown in Figure 64, The skin progressively saw cut to
nine, ten, and _leven inches did not fail at the limit stress of 14,100 psi,
as predicted by analysis. However, the actual residual strength was not
checked by test since the specimen wac to be used for further testing.

The results of the foreign object aamage, i.e. a fifteen inch skin crack
with the center stiffener broken, are shown in Figure 65. In the test, this
crack fast fractured to the frame at a stress of 13,600 psi, and arrested.
This is 9% below the stress for fast cracking predicted by analysis. The
panel with the two bay crack was subsequently tested to the required one-time
stress of 14,100 psi. There was no crack growth and the outer stiffener
remained intact. The analysis predicted that the outer stiffener would fail
at the one-time stress for a 23.1 inch crack. The analysis appears to load
the stiffener too much and the skin too little.

Honeycomb Concept; - Two large flat stiffened honeycomb panels were tested in
uniaxial tension. The tests are described in Structural Tests.

The first panel was us2d to demonstrate both crack growth and fail safe
capability. The test results are shown in Figures 66 and 67 respectively
along with the analytical results. As stated previously, unstiffened honey-
comb analysis methods were used. The experimental crack propagation data
showed good agreement with analysis for approximately 60,000 cycles. The
analysis and test curves then deviated with the analysis becoming conservative
until the curves crossed at approximately 92,500 cycles. For the residual
strength test, the case of a two bay crack with center frame intact was
checked by sawing a 38 inch crack (rather than 48" full two bay crack) and the
panel pulled to failure with a rising load. The panel failed at 298,000
pounds. The analysis predicted that failure would occur at 296,000 pounds.
This agreement is excellent. Since the analysis for AK versus half crack
length (a) for both tests is identical, the disagreement between analysis and
test. for the crack growth test is apparently due to the da/dn versus AK
material data used for the 2024-T3 face sheets.
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The second panel was tested for foreign object damage by pulling the
damaged panel to failure under rising load. The test and analysis results ar
shown in Figure 68, The analysis considered that the panel acted like a
cracked unstiffened face sheet and a stiffened cracked face sheet with no
influence from the core as stated previously. Failure occurred at the 25,000
psi stress predicted by analysis. However, the predicted fast fracture of the
stiffened skin prior to panel failure could not be verified. Failure of the
parts of the panel appeared to be a single occurrence.
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Fatigue Analysis

The fatigue criteria, service life and design fatigue life are presented
in Damage Tolerance - Requirements. The PABST utilization is given in

Table 11.

Fatigue Analysis Methods. - Conventional fatigue analysis based on Miner's

Cumulative Damage Rule and a scatter factor of 4.0 was used with appropriate
S-N material data.

Concept Analysis. - The three concepts described in the Design Concepts
Section were analyzed for the fatigue requirements. The critical points
checked on the fuselage were the same as the points used for damage tolerance,
Figures 44 and 48.

Internal and External Longeron Concepts: - Fatigue analysis based on DC-10

riveted structure S-N data showed no fatigue damage, i.e. "Infinite" life.
The pressure panel cyclic test N21, described in the Structural Test

Section, showed no fatigue cracking in participating structure in over four

lifetimes.

Honeycomb Concept: - Based on test data for a honeycomb splice, the fatigue
response of the honeycomb structure was the same as for an unnotched sheet.
The splice test was for'omax = 20,000 at R = 0.05 and over 106 cycles. The
analysis of the honeycomb concept based on this material data showed no
fatigue damage, i.e. "infinite" life.

The pressure panel cyclic test H25, in progress, has shown no fatigue
cracking in participating structure in over three lifetimes.
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Ultimate Mode - Bonded Joints

PPN IO 1 SR TN N

Analyses of intact adhesive bonded joints have been performed for three
situations: (1) the double-strap joints used in longitudinal splices, (2)
the flush single-strap joints used on circumferential splices, and (3) the
peeling apart of the skin and stiffening elements under internal cabin pressure.
Tests have been performed for each of these categories. The test results have
confirmed the predictions and established the adequacy of the bonded joints
for the ultimate mode for the thin and only moderately thick components
required for PABST. The conclusions for the bonded joints in intact structure
may be summarized as follows. The metal elements are more critical than the
adhesive for loads less than sufficient to yield the metal. Once yielding
occurs, the adhesive fails progressively, as long as the associated loads are
maintained, until complete failure occurs.

P

Double-Lap and Double-Strap (Longitudinal) Splices. - The analysis method for

Dt e E Y 0000 2 RIS A G v it LT AR B K e 6 PR MR Oa W S DY Tl

the double-strap joints are summarized as follows. 5
T ]
Temperature Topsi)] G psi Ye Yo ;
T «
R.T. (70°F) 5,000 50,000 0.1 1.0 ’ 5
-50°F 7,000 60,000 0.12 0.5 3
+160°F 2,500 | 40,000 | 0.063] 1.5 arctan(o) :
— Y ]
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FM-73 was found to be slightly stiffer and less ductile at room temperature,
but the effect is not large - these preliminary values were used to size the :
bond overlaps reported below. Those for FM-73 can be reduced by 0.06 inch in
the range 0.040 to 0.080 in. central adherend thicknesses.

For tensile or compressive lap shear, the bond load capacity per unit !
width is given as:

P = Lesser of frn(—— +’YP)2ET (]+ ) AND J27-P (__ +7P)4&0To(]+2E°To)
The bond strength for in-plane shear 1oading, likewise, 1is

S = Lesser of ﬁn( +79)E'T' (]_,..ELT.? ) AND ﬁnn(lzi_+7)(2fo'r0(] 25070)

A

O+V)Y 20T, 1+V) ;
Note that both P and S are independent of the overiap £, except for very §
small values of £ for which P or S is given by 21b2 . For good design practice, ;

P and S should exceed nominal requirements by 50% to provide for unknowns such
as local flaws and variable thickness bondlines. The required minimum lengths

e

to develop the strengths are: z
F
G (] 2 N
L= P (or 5) + 2 where n (EoTo E; Ti) ;f
2Tp )\(or )\s) 2
3:
Greater overlaps, of 2{1+1)G 2 '
e v

P(orS) + 6 n olo &ili

2TP A(Ol‘ x;)

are recommended for design purposes to provide a reserve of strength for fatigue
resistance and damage tolerance and to ensure that the adhesive stresses in the
middle of the overlap are sufficiently low so that the adhesive there can never
creep (See Figure 69), This area of very low stressed adhesive is intended to
provide a resistance to environmental degradation. It acts as an anchor, or /
memory, permititing the differential stresses in the adherends to push the :
adhesive back to its initial state each time the joint is unloaded. Short over-
lap joints, in which all of the adhesive is strained significantly do not have
this characterisitc. This is probably the reason for the poorer environmental
resistance of test coupons such as the RAAB specimen than have been demonstrated
by good adhesive bonds in service. 1
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The following table gives the nominal recommended overlaps for balanced
double-1ap and double-strap joints used in the PABST designs.

Central Sheet
Thickness ¢, (inch) | 0.040{ 0.050 | 0.063 0.0 0.080 | 0.090| 0.100] 0.125

L NI e I B e LY

Recomnended

overtap £ (w2t | va2 | 168 | 1 | 200 {220 | 2.3 | 2.8

Sirength of

zo%m? A\)unimm 2600 | 3250 | 4095 | ee1s | s200 | saso | eso0 | e128
n.

Potential Ultimate | 8115 | 9073 | 10184 | 10812 | 11477 {12173 {12831 | 14346
Bond Strength
{ib/in.) * ¥

+ Based on 160°F properties giving lowest value of A.

* Based on -50°F properties giving lowest joint strength. (The thicker
adherends, say 0.100 and 0.125, would need peel stress relief by
feathering the outer edges of the splices.)

$ For nominal adhesive thickness 1 = 0.005 in.

The lengths calculated are for balanced joints - slightly different overlaps
would be used if Eiti # 2E0to. These overlaps are sufficient to permit

riveted repairs if necessary. The potential bond shear strengths can be %
muitiplied by the following sequential modification factors as necessary.

For thin bonds - reduce strengths in ratio ‘/q/o.oos b

For ir-plane shear - reduce in ratio 0.62:1

For Fatigue with ‘Ymax restricted to 0.05 - reduce in ratio 0.138:1 '3

& i

For stiffness imbalance, see table below

Ziota/E(t1 0.2 0.4 106 |08 |1.0]1.2]1.4 1.6 | 1.8 | 2.0 9

Ratio of

Strengths of
Unbalanced 0.35 3§ 0.53) 0.69) 0.85) 1.0} 0.96) 0.93¢ 0.90 0.88} 0.8

‘V
and Balanced 3

Joints
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In the case of combined tension {(or compression) and in-plane shear loads, the
effective maximum adhesive shear strain derives from the condition

(Yas) # (Moo + (s e

It should be noted that the recommended overlaps above are less than half i
as great as would have been required by the arbitrary design rule of a uniform
bond stress of 500 psi over the entire bond area. Thus, the improved under-
standing of the actual load transfer and non-uniform stresses in bonded joints
has permitted a considerable weight savings in splices with respect to previous
bonded joint technology.

T ae b dAI AA ED A TR s S 1

R T N T T

Results. - The tynical joint strength values calculated ahove give no ;
cause for concern about a properly processed bond being weaker in ultimate 3
mode than the metal elements of the structure. 3

Static testing of such double-lap and double-strap bonded joints in 0.040
and 0.080 inch thick central adherends demonstrated consistent failures in the ;
metal, usually in the splice members. Therefore, for the 0.040 to 0.071 inch ]
central sheets, the splice plates were made one gage thicker than a balanced
joint. The small decrease in potential bond strength can be afforded because
the nominal bond strength is so much in excess of the adherend strength.
Balanced joints (t0 =1/2 ti) were retained for 0.08 inch sheets and above. i
(For the combined mechanically-fastened cold-bonded splices, the outer splices E
were made thick enough to accept a flush rivet head.) A series of static tests 5
performed at a very slow load rate (5 to 10 minutes to reach ultimate strength)
demonstrated how the adhesive fails if the metal stress is held at the yield
value or above. The failure mechanism is illustrated in Figure 70.

siains LOBInE. -3 o ¥, A

Single-Lap (Longitudinal) Splices. - The PABST design does not currently call 3
for any single-lap skin sclices. However, they can have certain potential E
advantages over double-lap splices, provided that they are proportioned
properly. Therefore the pros and cons of such splices are outlined briefly
here. The key advantage is a Tower cost from fewer pieces to be bonded
together, easier bond inspection, and only half as many fasteners. The dis-
advantages are a reduced fatigue life and increased crack growth rate because
of the eccentricity in the load path at the ends of the overlap. These dis~
1 advantages can be minimized, at the expense of a small weight penalty, by
' increasing the overlap. An overlap of 50 times the sheet thickness has about
the same weight as a double-lap bonded splice between such sheets, and repre-

sents a 1.5:1 stress concentration factor with respect to a nominal sxin stress
of about 20 ksi.
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Single-lap skin splices are particularly inefficient if the overlap is too
short; for example, with an &/¢ ratio of 20:1, an average sheet stress o<

20 ksi is increased locally to 55 ksi by the bendina moment at the eccentricity
whereas, if 2/4 equals 100, the same 20 ksi average stress induces a maximum
of only 25 ksi. Figure 71 depicts the relationship between maximum and
average stresses for c*fferen* 2/t ratios. Note that the abscissa reads
nearly directly as 2/¢ for aiuminum adherends. For the skin gages typical

of transport aircraft fuselages, good structural adhesives have more than
adequate shear capability if the overlap is adequate. The two potential weak
links are adherend bending and adhesive peel at the ends of the overlap. Both
problems can be alleviated by increasing the overlap and the second can be
minimized by a shallow chamfer at the end of each sheet.

Single-Strap, Flush (Circumferential) Splices. - The circumferential splices in
the PABST ADP are combined mechanically fastened/room-temperature bonded joints.
The sheet sizes available, and the location of such necessary manufacturing
breaks as the compound-curved te cylindrical shape, the major wing and landing
gear frames and the cargo door cut-out are such that intermediate bondad circum-
ferential splices are not needed.

Analyses and testing of such a purely bonded splice have been conducted.
The test panel was 24 inches wide and 48 inches long, with a central transverse
splice 6.5 inch wide. Two longitudinal stiffeners, spaced 12 inches apart were
bonded to the same side uf the skin as the splice plate, having a flush exterior
surface. The joint geometry is shown in Figure 72. This panel was tested at
high frequency and demonstrated a more than adequate fatigue life under such
circumstances of 100,000 cycles at the nominal 16 ksi stress followed by 33,400
cycles before failure at 24 ksi nominal load. However, the failure was
catastrophic and without warning. A short fatigue crack grew in the splice
plate, at the skin junction, and was only 0.7 inch long on the invisible faying
surface side and C.3 inch on the visible interior surface where it was held
shut by the compression on that side of the splice. This smal! flaw fast
fractured over the entire 24 inch width and the bonded stiffeners unzipped
instead of acting as crack stoppers. Analysis of this bonded joint indicated

severe bending moments in the splice at the skin junction and in the skins at
the edge of the overlap (see Figure 72), The strain gages recorded a compressive
stress on the inner face of the splice. The presence of the longerons
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The table below gives
stress and deflection

| T
cd—= o Lk

BONDED CIRCUMFERENTIAL SPLICE

the results of a non linear iterative solution of the
of the splice subjected to various skin stress levels.

0 avg SE?; 9 max 551 9 max ESi Opeel gsi Opeel fSi 9" i&" e/c

10,000 19,060 {25,602 1,312 5,765 0.014 | 0,054 -0.19
12,000 22,155 129,743 1,471 6,612 0.013 | 0.057 -0.20
14,000 25,155 | 33,637 1,616 7,380 0.012 | 0.059 -0.21
16,000 28,074 |37,318 1,749 8,082 0.011 | 0.061 -0.21
18,000 30,924 140,814 1,872 8,726 0.011 | 0.063 -0.22
20,000 33,718 {44,145 1,987 9,319 0.010 | 0.064 -0.22
22,000 36,459 147,336 2,095 9,867* 0.010 | 0.066 -0.22
24,000 39,154 150,402 2,195 10,377* 0.009 | 0.068 -0.22

*  Opeel

= 10,000 psi is failure

** moment is reduced to zero when §

L = 0.11 in.
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restrained the panel from deflecting quite as much as in the unstiffened sheet
analyzed, but the agreement was still good. For example, at ?4 ksi, the
combined bending and stretching stresses away from the longerons were measured
as 37 ksi in the skin vs 39 predicted, and 44.5 ksi in the splice vs 50.5
predicted. High peel stresses were predicted in the adhesive at the skin
junction and delaminations of up to 0.3 inch were detected by dye penetrant.
The circumferential splice joint has been redesigned as a conventional
mechanically fastened joint with room-temperature curing adhesive to enhance
the fatigue life. The overlaps for mechanically-fastened splices are signifi-
cantly less than those which are desirable for bonded splices, so the latter
are heavier. A length-to-overlap ratio of 100 is desirable for bonded single-
lap and single-strap joints, with a minimum acceptable ratio of about 50. In
the present case, the mechanically-fastened joint has a major advantage over
the bonded splice - in the former, the splice plate can bend smoothly over the
distance between the two inner rows of fasteners while, in the latter case,

the bending is sharper because it is confined to the immediate vicinity of the
skin junction.

Skin-to-Stiffener Joint. - The bending to separate the skin from the bonded
stiffeners, both longerons and frame shear tees, arises from two basic load
conditions. The first is the pillowing due to internal pressurization, while
the second is the wrinkling of the skin under shear loading. Analyses and
tests have been performed for the skin to stiffener junction stress. Both

the coupon and panel testing confirm there is no problem in this area wherever
the stiffener is continuous. In many instances, the stiffener web was ripped
of f the bonded flanges that remained attached to the wrinkled skin. There is

often a real or potential problem where the stiffener is cut, as at the shear T
cutout at the frame/longeron intersection. The only successful analyses that

have been and can be conducted show high margins but these are all for the non-
critical continuous stiffener cases. The analyses performed are for the onset
of buckling in shear and for the pillowing of the pressurized skin between the
frames. No analyses are available for the skin-to-stiffener forces associated
with fully developed shear wrinkles or for discrete stiffener lengths. Prelim-
inary analysis and past experience indicated that the stiffeners should be of

T or J cross section rather than L or 7, otherwise, the skin could easily peel
avay from under the hard web of the stiffener.
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Figure 73 indicates qualitatively the nature of the distribution of the
contact stresses between stiffener and skin under peeling loads for both
sheet skin and honeycomb skin. The distributions are distinct, with the
honeycomb panel being much stronger. The core failed every time for the
honeycomb tests while the bond failed every time for the sheet metal tests
(See Test Section). The reason for this is that the sheet metal is so
flexible the analytical bond stress distribution shows some 49 percent of the
bond pushing the other 51 percent apart. Even so, the tast results (See Test
Section) are very much greater than the requirements to resist the pressure
loads.

In the frame-bending test, Figure 74, it was definitely observed that
the first failure was a break in the skin to a shear tee bond locally at the
abrupt discontinuity in the shear tee where it was notched to permit the
longeron to pass through. Once this happened, the skin cver the shear tee
cutout was free to buckle, thereby reducing the effective frame bending
strength and stiffness at that location. The frame bent sharply and the bond
between the skin and shear tee unzipped at two of the three frames in the
panel. The load developed was sufficient to meet the design requirements
but the mode of failure was so undesirable that the shear tee cutout area
details will be improved for subsequent work. There was also some indication
in the testing of some of the stiffened shear panels that the abrupt discon-
tinuity in the shear tee triggered the failure. While all of the shear panels
tested developed adequate strength, those with external longerons or honeycomb
skin had uniform uninterrupted frames and attained consistently the highest
strengths. It is now evident that the nature of the stiffening of shear
panels can be more important even than the basic skin gage. If, as is often
the case, the frame cripples locally at the frame/longeron intersection,
local reinforcement of the frame outer cap or improved detailing of the
intersection is a more expeditious approach to increasing the panel strength
than raising the skin gage.
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Slow Cycle Fatigue

The service experience with adhesive-bonded joints falls into two
categories - those which last apparently forever, and those which have fallen
apart completely under environmental attack. The service failures have been
attributed to inadequate or improper surface preparation in conjunction with
adhesives which absorb much moisture. The use of phosphoric acid anodize
surface preparation in combination with an environmentally resistant primer
should eliminate problems associated with the use of FPL etch under inadequate
control. Therefore, there should be no reason to anticipate further environ-
mental or durability problems for the adhesive. Prior bonding experience
has been mainly with doublers rathe~ than structural joints. (As far as the
adhesive is concerned, however, it is worked equally hard in both cases, as
explained in Figure 75.) Therefore, those satisfactory service experiences
from past applications indicate that adhesives can be strong enough and
durable enough for the primary structural applications in PABST.

Boeing fatigue tests at slow cycle rates of the new-generation 250°F-
cure modified epoxy adhesives indicated the probability of inadequate life
when the adhesive was tested in a hot (140°F) humid (100 percent RH)
environment at load rates and durations more representative of service condi-
tions than the customary 30Hz used in prior testing. The differences between
testing such a joint and one more akin to real geometry are not well under-
stood. This is explained in Figure 76. So, to the original task of
demonstrating that more extensive use of adhesive bonding should be made in
fuselage construction, the program had to prove also that the new adhesive
selected had adequate environmental durability. This has led to an extensive
slow cycle testing program in which the cycle consists of five minute load-
up, 15 minutes hold, five minutes unload, and five minutes hold. The test
environment is nominally 140°F, 100 percent RH. The joints tested include
double-strap splices for 0.04 inch and 0.08 inch skin using aircraft geometry
overlaps, 1.15 and 1.94 1inch, respectively. A small number of thick
adherend short overlap specimens (half inch single overlap in 0.25 inch

N ke

— e

plate) has been included. It is planned to add tension tee testing as well. |
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A successful conclusion to this phase of the testing would be no failures in
specimens other than the thick adherend short overlaps. The slow cycle test-
ing will continue through later phases of the program. It is anticipated that
the fatigue failures at bonded joints in the structure will be in the metal,
not the adhesive.

Some exploratory tests were run to assess the influence of local creep
in the adhesive, at the ends of the overlap, on the overall response of ad-
hesive bonded joints under repeated loading. Two double-lap joints were
butted back-to-back to magrify the signal and strain gages were glued across
the gap. Repeated tests were run for 30 min. (DAC) cycles and 85 min.(Boeing)
cycles. Specimens of two widths were run, with 0.080 inch central adherends.

The same loads were applied to all specimens in every cycle. The ad-
hesives does not affect the fatigue 1ife of bonded joints when those joints
are of real structural configurations. The load versus strain gage signals
were not identical for the first few cycles but became so by about the fifth
cycle, Most importantly, even though recovery was not complete during the un-
loaded portions of the cycles, by the end of each loaded segment the strain
gage readings were identical - that is, what creep there was at the extremi-
ties of the overlap was shown not to be cumulative. This is because, for a
giver. 1oad, the joint deflections are dominated by the strains in the metal.
The adhesive strain is zero in the middle ¢ the overlap, so the relative
motion at the ends of the overlap, across the glue line, is always the same
for a given load. This i< not the case for the short overlap joints, such as
the thick-adhererd and RAAB specimens, in which the progressively accumulated
adhesive creep leads to failure of the adhesive under slowly repeated loads.
This factor is very impcrtant in projecting from the behavior of joint coupons,
specially configured to enforce bond failures, to joints of real structural
proportions, designed to develop the full strength of the metal. The tests
reported above verified the adequacy of the test technique which, so far at
least, is the only one shown to have given consistent readings from such
small signals - adhesive strains are small enough to be difficult to measure
but the perturbations on these due to creep are sub-microscopic. The result
lend confidence to the belief that structural adhesive joints will not fail
in service due to fatigue of the bond.

152

e e T st e AR bl LIt RN e AEOEYS. "anrmm Lo X - Feat) ST o < s A " kP M

»

e B R R St A SR AN N

SR AR T TR L VT o0 S R IC T S e P % SR L A e o S SR

Sl Bt 5 e S M a5 4N S e RS O

P

e ep e B A L Bt f e




B T et s - T G e Pt R WA o7 O - S WAL IR L AR R N T A b e AT

Strength of Flawed Bonded Joints

Future testing planned for the PABST program includes an extensive in-
vestigation into the effect of defects in the bonds. These tests are to be
conducted at the DAC slow cycle rate (5 minutes loadup, 15 minutes hold, 5
minutes unload, 5 minutes dwell) in a 140°F, 100 percent RH environment.

The scope of the program is outlined in Figure 77. The specimens are double-
lap splices, sheet-metal tee skin/stiffener combinations and honeycomb/tee
Joints. The flaws considered include both processing variables which are
1ikely to lead to incompletely cured adhesive that could react adversely with
the environment and a variety of mechanical defects. The latter include
porosity, voids, and a bondline which has been fractured at the edges.
Experience at Douglas with the new 250°F curing epoxy adhesives indicates
these adhesives flow so much that it has been difficult to deliberately
create such a flaw. Anticipated improvements in the manufacturing methods
for bonded assemblies will make the detail parts fit together better for
bonding so that the incidence of natural flaws will be negligible. Prelimin-
ary testing of bonded coupons at MCAIR for the PABST support program
“Definition and Non-Destructive Detection of Critical Adhesive Bond-Line
Flaws" has established that bond flaws do not grow under high frequency
testing - the metal fatigues away just as for unflawed bonds., Therefore,

any such investigation must be conducted at load rates and durations close to
those experienced in service. The adhesives to be employed in this investi-
gation include: (1) FM-73, the selected 250°F adhesive for PABST, (2) the
selected room-temperature curing adhesive for enhancing the fatigue life of
the mechanical splices at the manufacturing breaks, AF-55. AF;55 is radio-
opaque permitting inspection by X-Ray, and (3) PL729 which is a higher
temperature curing epoxy used on the B-1 and is less likely to be sensitive
to the environment.

Those flaws which would permit corrosion of the structure will naturally
be repaired prior to delivery. For other local flaws it is Tikely that the
effect of the flaw will be nullified by transferring load into the otherwise
lightly-loaded elastic trough in the adhesive. If the global, as opposed to
local, problems due to out-of-tolerance processing prove to be a problem
during test it will be necessary to tighten up the processing and inspection
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techniques to remove faulty parts for re-trzatment prior to assembly. Other-
wise, the bonded structures are anticipated to be very tolerant of local
bond flaws during manufacture and service.

Analysis into bonded defects is proceeding along two paths. The one-
dimensional stepped-lap joint analysis program A4EG has been modified to
permit variable adhesive properties and thickness along the length of the
overlap. This program also can account for partial or complete local voids
in the adhesive which redistribute the load transfer along the load direction.
This program is being debugged. A two-dimensional analysis program has been
prepared for flaws large enough to affect a gross rediscribution of load
transfer, as explained in Figure 78. The latter program has been modified to
account also for the adjacent parallel stiff and sof? load paths associated
with variable thickness adhesive bonds. This work will be reported separately
when completed.

FLAW

L KA
\-BOND BOND

Tp Ooco
ADHESIVE SKIN STRESSES
STRESSES T
L—/._l Tp
Ly
t
o LOW STRESS IN BOND o IF METAL YIELDS
AND SKIN SO AS NOT PRIOR TO BOND
TO PROPAGATE FAILURE, FLAW
DISBOND PROPAGATES

FIGURE 78. REDISTRIBUTION OF LOAD AT FLAWS IN BOND
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STRUCTURAL TESTS

Structural tests on small specimens and on large flat and curved panels
were conducted in Phase Ib to obtain allowable strength data and to verify
that the fatique and damage tolerance criteria could be met. The large static
and cyclic load panels are identified and the panel sizes and 'oading methods
tabulated in Figure 79 .

The following subsections describe: (1) the tension tee tests, (2) the :
shear, tension-shear interaction, and compression-shear interaction tests, :
(3) the frame bending test, and (4) the fatigue and damage tolerance uniaxial ;
and biaxial tests. 3
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Static Tests

Tension Tee Static Tests. - These tests were made to determine the joint
static strength between the frame tee shear clip and the skin under the
simulated cabin pressure (14.3 psi ult) load. The test results are summar-
ized in Table 18 and 19. A1l failures in Table 18 were in the bond

and generally of the cohesive type failure. A1l failures in Table 19

were in the honeycomb core except as noted.

TABLE 18
TENSION TEE TEST

FAILURE LOAD DESIGN ;

TEST TEMP LOAD ;

SKIN AOHESIVE | PRIMER [-50 + 5°F| R.T. 140 & 5°F] -50°F ;
0000 7075-76 | Fe73 {BR127 | 174018 249 LB ;
0.040 7075-T6 | FM 73 | 8R 127 | 1595 B 389 L8 :
0.090 7075-T6 | AF 55 | XA 3950 4000 L8 | 249 LB b
090 7075-T6 | M 1133 [BR127 | 2170 1B 249 LB :
0,090 7075-T6 | AF 55 | xA 3950 | 5910 LB | 5050 LB] 5075 LB | 249 L8 ;
-090 7075-16 { M 1133 |BR 127 | 2640 L8 | 4650 LB 249 LB )
0.040 7075-T6 | AF 55 | XA 3950 | 1670 L8 | 3700 LB{ 4220 LB | 389 LB ;
0.040 7075-T6 | M 1133 | B8R 127 | 2105 (8 | 3275 L8] 3358 1B | 389 L8 ‘

ALSO TAPERED FLANGE

o, —— ©

——
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TABLE 19
TENSION TEE TEST - HONEYCOMB

FACESHEET | CORE TEE TEST FAékéNG TYPE OF ngﬁg"
THICKNESS { DENSITY| THICKNESS [TEMPERATURE | (rg) |FAILURE* | g}
0.020 |3.4PSF | 0.050 -50 2580 1 462
7075-T6 AMBIENT  |2530 ]
+140 2460 1
0.020 [5.2 0.050 ~50 3720 | (1) 462
7075-T6 +140 3830
0.020 |7.9 0.050 -50 5210 | (2) 462
7075-T6 +140 3360 | (2)
0.020 |5.2 TAPERED -50 3580 | (1) 462
7075-T6
0.040 5.2 0.094 -50 4100 | (1) 392
7075-T6
1096942 17.9 0.094 -50 6975 (1) 392

*(1) CORE SHEAR (2) FACESHEET TO CORE BOND DELAMINATION (TENSION)

ALSO TAPERED FLANGE

o

3

0.8
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Shear Static Test Panels. - These tests were to determine the static shear

and the combined shear plus tension or compression strenath of the fuselage
shell concepts, Figure 79. The test results are shown in Tables 20 and 21.
A1l visible evidence of the test specimens indicated that failures initiated
in the metal with occasional secondary adhesive disbond. A significant
observation is that, in those specimens having shear tee cutouts at the frame/
Tongeron intersections, failure was initiated by crippling of the Z frame
flange closest to the skin. It should be noted also that, in the absence of
such cutouts, the shear tee was often ripped along the web/flange intersection,
with the flange still bonded securely to the sharply wrinkled skin.

TABLE 20
SHEAR — COMPRESSION/TENSION
INTERACTION STATIC TEST PANEL

ADHESIVE FM73, PRIMER BR127, TEST TEMP = 140°F

f TEST DESIGN
?
: SPEC SKIN SHEAR | AXIAL | SHEAR | AXIAL
! NO.* 707576 LONGERON | (KSh | (KSh | (ksh | (Ksi)
!
i 20 0.05 H 18.1 -29.2 17.8 -14.0
_i
i 24 0.05 || 23.0 565 | 134 55.4
é’
i 20 0.09 NONE 16.9 ~87 | 163 -84
§ 24 0.05 ! 306 67.9 | 13.4 55.4
3
3 20 0.05 i 18.0 -182 | 178 | -140
p

i

AX{AL STRESS - = COMPRESSION, + = TENSION
*SEE FIGURE 79
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TABLE 21
SHEAR STATIC TEST PANEL NO. 22***

PRIMER BR127

ANALYSIS
TEST | DESIGN | FAILURE
SKIN TEST | SHEAR | SHEAR | PREDICTION
707576 LONGERON | ADHESIVE | TEMP | (KSI) (KSI) (KSH)
0.04 i FM73 -50°F| 198 13.0 18.3
0.09 !i RIVETED R.T. 24.6 20.0 21.8
0.09 l FM73 RT.| 265 20.0 21.8
0.04 ! M1133 -50°F | 275 13.0 18.3
0.04 ! M1133 140°F | 25.3 13.0 18.3
0.09 NONE FM73 140°F | 19.6 20.0 10.6
0.09* NONE FM73 140°F | 23.8 20.0 12.6
(202473)
= 002t = 0.020"" NONE FM73 R.T. 42,6 13.0 23.5
t, = 0.04,t = 004" NONE FM73 140°F | 480 39.0 23.5
0.0424 ! FM73 140°F | 30.7 13.0 23.3
*12IN. FRAME  *’48IN. FRAME ***SEE FIGURE 79
SPACING SPACING

Frame Bending Test. - These tests determine the static strength of a typical
frame-longeron-skin combination, Specimen 23 on Figure 79, under pure bending
in the frame. The test setup and frame section properties are shown in
Figures 80 and 81 respectively. The test results are shown in Figure 73.
Initial failure occurred for a one-inch length in the bond between the skin
?f and frame tie shear clip, starting at the edge of the shear clip cutout for

‘ the Tongeron, followed by complete disbond between longerons and subsequent
frame crippling.
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Fatigue and Damage Tolerance Tests

The fatigue and damage tolerance tests in Phase Ib of the PABST program
were designed to:

(1) Evaluate bonded structure to determine if there are significant
improvements in fatigue life and damage tolerance when compared
to equivalent riveted structure,

(2) Demonstrate that the internal longeron, external longeron, and
honeycomb design concepts meet the fatigue and damage tolerance
criteria of MIL-A-008866, MIL-A-83444 and the additional DC-10
residual strength criteria,

(3) Demonstrate correlation with analysis procedures.

The first series of tests (Specimens 1, 3 and 4) using panels with
Z sections attached to skins by bonding and riveting did show that bonding
reduced the rate of flaw growth particularly in the region of the stiffener.
This was due to the greater stiffness of the adhesive which resulted in the
stiffener picking up the skin load much more rapidly than would be the case
with the more flexible rivets. The residual strength showed a marginal
improvement over the equivalent mechanically fastened panels. The absence
of fastener holes naturally resulted in improvement of fatigue life.

Later tasts (Specimens 21 and 30 on Figure 79) showed that each of the
three concepts could and did meet the damage tolerance, fatigue and residual
strength criteria. The analysis/test correlation was also good. At least
one problem area was uncovered during the internal longeron flaw growth time
history test. It was found that, at the frame longeron intersection in the
shear tee cutout area, a severe fatigue stress concentration existed. This
was due to the discontinuity of the frame shear clip at the longeron trans-
ferring a shear clip load into the skin. Due to the high stiffness of the
bond, the load was transferred locally into the skin in the region of the
shear clip cutout with the result that fatigue cracks were developed in four
of the eight cutouts in the panel. The remaining four cutouts had the
longerons joggled over a skin splice so there was much better continuity of
load path. Though this cutout condition does exist in mechanically fastened
structure, the greater flexibility of the fasteners permits the load to be
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transferred over a greater length of the frame and thus shear into a greater
width of the skin. The modification to correct this situation was to bridge
the shear tee cutouts with straps extending from the tee flanges to the
Tongeron flange. This modification was incorporated in the subsequent
residual strength panel. This panel attained the required life. The cutout
area remained highly stressed and demands continued attention. No cracks
developed in or near these bonded straps in the absence of initial flaws.
However, where the skin was pre-cut at one of the cutouts in the shear tee,
the splice strap cracked completely through on one side and debonded on the
other side.

During this entire series of tests, great care was taken to monitor the
bondlines, and the growth of known bondline flaws. There was no instance of
disbonding or bondline flaw propagation during any of these tests. There
were cases of disbonding put these were all initiated and propagated by metal
yielding. A typical test installation is shown below.
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Riveted vs Bonded Damage Tolerance Tests. - This series of tests compared the
crack growth and residual strength characteristics of riveted and bonded
reinforced aluminum panels.

Test specimen configuration, Specimen 1, and details are shown in Figure
82 and Teble 22 toether with a summary of the test conditions. All the
panels were tested at room temperature except one of the bonded panels which
was tested at 140°F. Each of the bonded panels was inspected ultrasonically
and some voids were found along the free edge of the Z section stiffener.
There was no evidence of these voids propagating during the test, nor did
they significantly influence the test results.

Tne panels were all subjected to a constant amplitude stress cycle
Omax = 14,000 psi R = 0.05.
The rate of cycling was approximately 3Hz on the Schenk Machine.

Each panel was cycled until the cracks were grown from the initial 0.25
in.sawcuts to predetermined lengths. When these crack lengths were achieved,
the panels were loaded statically to failure to determine the residual
strength.

The crack growth time history data for the two-stringer panels are shown
in Figure 83 . The interesting feature is that as the crack approaches the
stiffener, the retardation in the bonded panel was significantly greater than
in the corresponding riveted panel. This is due to the higher stiffness of
the adhesive which permits faster transfer of load out of the skin and into
the stiffener; i.e., more effective in retarding crack growth.

For the single stringer panels with the initial flaw in the skin under
the stiffener flange, see Figure 84, the adhesive showed a higher crack
retardation than the riveted panel. It should be noted that the bonded panel
which was tested at 140°F showed an even greater crack growth life than the
bonded room temperature specimen. It would appear that decreased bond
stiffness with temperature should result in faster crack growth. Though there
is no data to substantiate this, it is thought that the basic material da/dN
characteristics improve with temperature, at least in the lower Ak ranges.

167

e a3 Ma St x selBf

Lt R b, S £

el A B 2N 22 K ek aan bR

At G, e

Ak

o

O R s WY SRNUT S WV IN L ¥ < 3 19

Saairs S1LE> ol S




N
|

Vbl RSt ek
. PN

R R R LR e ™

Rt e Sty

ey

T

e T

SNSRI A R A

A

R A T

a Rt A A IR ST

ST AP AT RISy Pt TR L

STIVL3Q My14 QNY | NIWIJI3dS 1S3l

(opseaia i R S sl

- 0098 ——=
e 2G| |~ =00l |-
’ ooooooaoﬁooooomomooooo
: i
+ +
+ +
1 Us
}
oo’y ‘I +:
! *i
| NIVY9
M 1 I o
o0ve + +__
:_ u__
_ +41 |
|
_ [
A* N1 i
*__ i
4+ </ 4
- ] Amv\ MR
| |

T8 3UNOLS

*3wes 3y3 St 9s}a
BuiylzAusAl “uil)sS 9yl 031 PIpuOq 343M
suo4abuo| uot3d3s 7 Iyl °suawidads

SO

papuog j0 3sed> 2yl ul  -umoys
04 aae suswtoads palaAld ALug  ILON
NOISNYLX3 91-G/0L “4411S
133HS €90°  €L-¥202 :NIMS
000l mnnl
ooooo“"mmooooo —
=+_4. _
g a9 : i
+
e @ .
+f 008y
+f |
NIv¥9 [*] | i
g —————— A¢_
+1 ]
3-2 + (010}
4
4
{ +
+
+

[
L
(an]

168




TABLE 22

SUMMARY OF TEST CONDITIONS, SPECIMEN 1

STIFFENER
TO SKIN
ATTACHMENT

NUMBER OF
STIFFENERS

INITIAL FLAW
SIZE AND
LOCATION

GROSS
AREA
IN =

FINAL
CRACK
SIZE

TEST
CONDITION

Riveted

2

1.0 in. mid
bay at sym.
center line

2.742

13.80

R.T. Lab Air

Bonded

1.0 in. mid
bay at sym.
center line

2.742

14.03

R.T. Lab Air

Riveted

.100 in,

flaw on one
side of the
countersink

1.497

6.00

R.T. Lab Air

Bonded

.25 in.

flaw at
panel

center line
in the skin
under stiff-
ener flange

1.497

R.T. Lab Air

Bonded

1.497

6.04

140° F Dry Air
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Also, this improvement in da/dN could dominate the loss of stiffress of the
adhesive. Perhaps an increase in strain energy of the adhesive, because of
its greater ductility at 140°F, is capable of explaining the improved life.

From the above, it is apparent that significant improvements in crack
growth time histories can be anticipated in bonded skin-stiffener structure.

A char¢teristic of 2024-T3 material is slow stable crack growth
under static load. Each of the five panels exhibited this phenomenon as
shown in Figures 85 through 87. The failure loads of each panel were:

Crack Length Failure
Panel Configuration at Failure-In. Load-Lb.
Two Stringer Riveted 16.5 73,887
Two Stringer Bonded 15.45 83,903
Single Stringer Riveted 6.79 44,418
Single Stringer Bonded (R.T.) 6.72 47,042
Single Stringer Bonded (140°F) 6.58 46,128

Though the bonded panels show a higher residual strength than the
corresponding riveted panels, the differences are not great and could be
explained by the variations in the total crack length at failure. Analysis
of the faiiure indicated tne following sequence:

(i) Stiffener yielding at a gross area stress of 23,000 psi;

(ii) Stiffener to skin disbond for approximateiy 2.8 in. on each
side of the crack;

(iii) Stiffener to skin disbond increasing to 3.5 in. with increasing
lcad to 30,600 psi remote stress;

(iv) At the remote stress of 30,600 psi, the skin crack tip stress
intensity reaches critical value and results in fast fracture
of the skin;

(v) Next, the stiffeners disbond from the skin and fail at the ends.

The stiffeners had parmanent set on examination after the test.

Significant improvements can be expected in the damage tolerance charac-
teristics in using adhesive bonding to join skin a1 d stiffeners.
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Fatigue Test of Bonded Splice with Metal Flaws. - A full scale panel, with a
typical bonded symmetric skin splice, was fatigue tested with metal flaws in
the skin and doubler. This test was conducted to determine the number of
cycles necessary to initiate a crack in the adjacent element for cases where
a primary crack terminates due to an element failure.

The details of the specimen, 4A, are shown in Figure 88. The significant
features of the panel design are the .090 thick skins and .050 doublers made
from 2024-T3 bare sheet. The elements were bonded using phosphoric acid
anodize, BR127 primer and FM73 adhesive.

The flaws were eloxed in the skin and doubler before bonding as shown
in Figure 88. Test loads and environment planned for this specimen are
given in Table 23.

TABLE 23

TEST LOADS FOR PANEL 4A

| O Max Max Load Min Load Test Temp.
No. PSI R Pounds Pounds Cycles °F
i 14,000 | .05 21,400 1,600 100,000 140°F
2 16,000 § .05 35,900 1,800 85,000 140°F
3 20,000 | .05 44,900 2,200 100,000 140°F
4 | 24,0600 | .05 53,900 2,700 26,040* 140°F

»

Panel failea after 26,040 cycles at Omax = 24,000 psi.

Two strain gages were instalied on the parel. One on the doubler over the
elox slot in the skin and the second on the doubler opposite and over the elox
slot in the doubler. The crack growth in the skin was monitored by X-rays
uirtil the crack orew past the spiice doubler. Table 24 gives the crack
length and associated strair gage data as functions of cumulative fatigue
cycles.
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TABLE 24

CRACK LENGTH AND STRAIN GAGE DATA SPECIMEN 4A

LOAD - LBS.| No. OF DOUBLER | CRACK SKIN |CRACK
(STRESS-PSI)|  CYCLES CRACK gOUBLER CRACK |DOUBLER
TRESS STRESS
LENGTH | pc; LENGTH ' e
31,400 0 0.25 in. {STRAIN 0.22 in) STRAIN
40,000 .27 GAGE GAGE
60,000 .32 NOT NOT
(14,000) 80,000 .37 INSTALLED INSTALLED
100,000 .44
100,000 .44 14,730 16,770
120,000 .55 14,150 16,830
35,900 140,000 .70 13,600 16,420
160,000 .83 12,100 17,100
(16,000) | 180,000 .92 11,640 17,380
185,000%* .9 11,630 0.65 17,490
185,000 .96 15,610 21,750
195,000 | 1.14 - -
205,000 1.29 14,670 22,940
215,000 1.3 - -
44,900 225,000 1.67 14,170 23,840
232,000 | 1.70 14,110 24,170
245,000 | 1.82 13,740 24,320
(20,000) 249,620% | 1.92 13,300 24,400
265,000 1.92 13,480 24,880
279,380 | 2.42 13,840 25,200
285,000 | 2.43 14,060 24,980
285,000 | 2.43 17,630 30,320
295,000 | 2.64 18,700 2.5 32,020
302,010 | 2.80 19,460 2.58 33,050
53,900 305,000 | 2.82 - 2.63
308,000 | 2.90 - 3.00 GAGE
(24,000) | 309,630%* | 2.92 19,830 3.60 ouT
310,470 | 2.92 - 4.25
310,800 | 2.93 - 4.50
311,040 - - FAILED -

* Double crack propogated to R/H edge of doubler.
** Crack length measured by X-ray.
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The following observations were made on examination of the specimen after
the test:

S

Mt i A

(1) There was no evidence of any disbonding as the flaws propagated ;
through both the skin and doubler, ‘

(2) The final failure occurred through the skin flaw. Though approxi-
mately 15,000 cycles at Omax = 24,000 psi were applied to the
panel after the crack reached the edge of the first skin under the
doubler, no evidence of a fatigue nucleus was found in the second :
skin adjacent to the crack,

(3) The flaw in the doubler propagated on both sides of the elox slot 3
until it reached the near side edge at 249,620 éyc]es. It then é
continued to propagate on the other side until panel failure through 5
the skin flaw. There was no evidence of a fatigue crack developing

in the skin or in the opposite doubler.

ool

Fatigue Test of Bonded Splice with Adhesive Flaws. - A full scale panel,
Specimen 4B, with a typical bonded symmetric skin splice, was fatigue tested

with built-in adhesive flaws in the bond area. The growth of these flaws was k
to be monitored by periodic non-destructive inspection and by photo stress :

methods. After completion of the test, the specimen was to be cut up and
peeled apart to study bondline flaw growth, if any.

",

The test specimen details are shown in Figure 89 showing the intended
size and locations of the bondline flaws. The skin and doublers were made
from 7075-T6 bare material. The specimens consisted of three skin splices:

R T AR RN DS P oo

(1) Constant doubler thickness splice at the upper grip end,
(2) Symmetric centerline splice with flaws,

(3) Tapered symmetric splice at the lower grip end. i

The bondline flaws were to have been achieved by cutting out the
adhesive to the size and locations of the desired flaws. However, during the
curing process, adhesive flowed in to fill the void and only a small irreqular

flaw was achieved at the centerline., The test loads planned for this speci- %

men were as shown in Table 25,
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TABLE 25

20T N2 RSt Sn Seh

TEST LOADS FOR THE BONDED SYMMETRIC SKIN SPLICE SPECIMEN 4B

Omax P max Prax | NO. OF PHOTO STRESS

NO. | psi R Pounds | Pounds| CYCLES RQTA RECORDED

1 14,000 | .05 60,500 3,000 100,000 0; 20,000,
40,000; 60,000
80,000

e AL asns

2 16,000 | .05 69,000 3,500 100,000 0; 20,000,
60,000

3 18,000 | .05 77,800 4,000 100,000 0; 40,000,
80,000

4 20,000 | .05 86,500 4,300 100,000 0; 40,000,
80,000*

AT L AN Py B SAGIABR aEANY y v

5 24,000 | .05 }103,700 5,200 100,000 0; 40,000

273

* Oblique angle incidence photo stress fringe data at this point.

EE

The above schedule was followed until failure of the test panel at
452,340 cycles; i.e., 52,340 cycles into loading at 24,000 psi.

SR

The instrumentation consisted of photo elastic plastic bonded over both
sides and full width of the centerline splice and the skin ahead of the
splice. A short length (10 inches) of the photo stress plastic was applied ;
to one side of the lower grip end tapered splice. The Tocations of the points
at which photo elastic data was taken are shown in Figure 90. A set of photo 5
elastic stress data taken at 20,000 psi and 80,000 cycles is given in Table

Zae st M dara Sereny 7,

Photo elastic stress data taken at the intervals indicated in Table 26
showed little or no variation. This demonstrates that the adhesive flaws did
not propagate during the test. This was later confirmed by a teardown inspec-
tion of the panel. The stresses measured by photo elastic method at points
100 through 112 are plotted in Figure 91, This stress distribution in the
splice doubler could only resuit from a shear stress distribution as shown in
the second curve of Figure 91 . A color photograph of the fringes in the
photo elastic plastic at 24,000 psi are shown in Figure 92 . These indicate
a variation from nominal stress at the middle of the splice by up to 25
percent, which is attributed to the different stiffnesses of variable thick-

ness bondlines.
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TABLE 26
PHOTO ELASTIC STRESS DATA AT 20,000 PSI

POINT P Q. POINT P q
LNo. | psi psi NO. psi psi
9 19,781 363 100 15,224 288
10 19,069 -738 101 15,888 1,179
n 19,083 2n 102 16,867 1,408
12 915 |-4,559 103 14,550 «507
13 7,634 |-3,425 104 13,907 -614
14 11,281 [-1,180 105 11,91 279
15 14,715 438 106 10,794 -754
_
16 12,088 {-1,805 107 10,446 -351
17 21,120 | 2,012 108 9,039 | -1,276
18 22,681 | 2,681 109 5,752 | -3,599
19 19,113 407 o 5,569 | -1,343
20 -736  |-5,961 m 3,787 -982
21 9,145 |-1,571 n2 11,365 | -1,416
22 11,393 {-1,789
23 15,220 | 1,101
24 13,552 -78
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The panel failed after 452,340 cycles; i.e., 52,340 cycles into the
24,000 psi load level. The failure originated at the corner of the lower
tapered splice. There was evidence of fatigue crack for approximately 0.8 in.
from the edge. The rest was static failure. This was confirmed by electron
microscope fractographic examination.

Fatigue Test of Bonded Single Lap Splice. - This test was conducted to
determine the fatigue 1ife of a bonded, single lap, hoop splice under varying

fatigue cycle loads at both elevated (140°F) and room temperatures, Specimen 3.

The location and mode of failure, crack propagation, and the load redistribu-
tion in the panel due to metal or adhesive creep were also test objectives.

The test specimen details are shown in Figure 93.
features of the design are:

The significant

(1) 7075-T6, .09 in. bare sheet skins,

(2) 7075-T6, .125 in. bare sheet doublers,

(3) 7075-T6, bare sheet skin splice tapered from .125 in. to .040 in.
at the edges,

(4) 7075-T6 extrusion longerons.

The skins, doublers, longerons and splice were bonded using BR 127
adhesive primer and FM-73 adhesive. The assembly was ultrasonically inspected
prior to testing.

The test loads are shown in Table 27.

TABLE 27
SPECIMEN 3 TEST LOADS

ERANEE LSRR IER:

;

¥
I3
'3
b
N
#
i£
2

LOAD | MAX LOAD { MIN LOAD [MAX STRESY SPECIMEN CYCLE NUMBER OF
NO. KIPS KIPS KIPS TEMP. °F RATE CYCLES
W m
1 41.9 2.13 16.0 144 3 Hz 100,000
2 62.8 3.20 24.0 R.T. 3 Hz 33,400*

* Panel failure occurred at 33,400 cycles at maximum load.
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Static loads of 41,900 1bs. and 62,800 1bs. were applied and held for as
long as 4 hours and 140°F to determine stress redistribution due to adhesive
creep. Four strain gages were installed on the panel as shown in Figure 93.
Not shown are seven thermocouples used to monitor the temperature. Creep
data was recorded prior to fatigue testing. Table28 shows the stresses at
each gage location as a function of load at 140°F.

TABLE 28
STRAIN GAGE UATA PRIUR TO FATIGUE TESTING

LOAD GAGE-G1 GAGE-G2 GAGE-G3 GAGE-G4
~KIPS STRESS-KSI STRESS-KSI STRESS-KSI STRESS-KSI
0 0 0 0 0
10.5 2.62 2.20 -0.77 =2.71
20.9 5.19 4.04 -1.32 -4.85
31.4 7.75 5.81 -1.71 -6.56
41.9 10.33 7.60 -1.94 -7.90
0 0.00 0.00 0.01 0.00

Temperature +140°F

The load was held at 41,900 1bs. for one hour, the strain gage data being
recorded at 10 min. intervals. The load redistribution in the panel is shown
in Table 29,
TABLE 29
CHANGE IN STRAIN GAGE DATA

TIME GAGE-G1 GAGE-G2 GAGE-G3 GAGE-G4
MIN. | ASTRESS-KSI | ASTRESS-KSI | ASTRESS-KSI | ASTRESS-KSI
| e—————
0 0 0 0 0
10 -0.06 -0.11 -0.24 -0.43
20 -0.08 -0.13 ~0.33 -0.58
30 -0.08 -0.16 -0.39 -0.68
40 -0.10 -0.17 -0.43 -0.75
50 -0.10 ~0.19 -0.47 -0.80
60 -0.10 -0.20 -0.48 -0.84

Load heid at 41.9 KIPS (16 KSI Stress) and at 140°F.

determine Toad redistribution in panel due to creep).
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It should be noted that the Z stiffeners are bonded to the panel for their
entire length with no mechanical fasteners used. However, the important
point is that strain gages are sensitive to load redistribution because of
bondline creep. Table 30 shows the strain gage data taken at room tempera-

ture up to a load of 62,800 1bs. TABLE 30

STRAIN GAGE DATA PRIOR TO FATIGUE TESTING - R.T. (80°F)

LOAD GAGE-G] GAGE-G2 GAGE-G3 GAGE-G4
-KIPS STRESS-KSI STRESS-KSI STRESS-KSI STRESS-KSI
0 0 0 0 0

10.5 2.54 2.00 -0.60 -2.29
20.9 5.08 3.81 -0.97 -4.03
31.4 7.63 5.59 -1.19 -5.43
41.9 10.19 7.41 -1.28 -6.51
52.3 12.70 9.16 -1.39 ~-7.57
62.8 15.25 11.01 -1.52 -8.46

This maximum load was held and changes in the four gages recordea as shown in

Table 31, indicating bondline creep even at room temperature.

CHANGE IN STRAIN GAGE DATA AT 62.8 KIPS CONSTANT LOAD

TABLE 31

TIME GAGE-G1 GAGE-G2 GAGE-G3 GAGE-G4
MIN. | ASTRESS-KSI | ASTRESS-KSI | ASTRESS-KSI | ASTRESS-KSI
0 0 0 0 0
10 -0.02 -0.06 -6.05 -0.30
20 -0.03 -0.09 -0.13 -0.45
30 -0.04 -0.10 -0.17 -0.53
40 -0.06 -0.13 -0.21 -0.60
50 -0.04 -0.11 -0.21 -0.63
60 -0.03 -0.11 -0.23 -0.66

24.0 KSI stress at R.T. before start of fatiaue cycling. Load

held at 62.8 KIPS to determine load redistribution due to creep.
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During the 41,900 1b. maximum fatigue load (16 KSI stress) cycle testing

strain gage readings were taken before the cycling began, after 42,600 cycles,

and after 100,000 cycles. This data is shown in Table 32.

TABLE 32
STRAIN GAGE DATA FOR THE 41.9 KIPS FATIGUE TEST

LOAD GAGE-G1 | GAGE-G2 | GAGE-G3 | GAGE-G4 REMARKS
KIPS KSI KSI KS:I KSI
nm‘m S

0 0 0 0 0
10.5 2.7 2.71 -0.88 -2.99 Readings taken just
20.9 5.30 4.10 -1.46 -5,26 prior to start of
31.4 7.88 5.89 -1.87 -7.09 fatigue cycling at 140°F
41.9 10.46 7.67 -2.13 -8.48
41.9 10.21 6.82 -2.92 -10.28 Readings taken after

1.4 7.76 5.13 -2.52 -8.53 42,600 fatigue cycles
20.9 5.16 3.47 -1.90 -6.18 at 140°F
10.5 2.56 1.83 -0.98 -3.04

0 -0.17 -0.22 0.17 0.58

0 0 0 0 0
10.5 2.67 1.95 -1.21 -3.62 Readings taken after
20.9 5.18 3.47 -1.99 -6.38 100,000 fatigue cycles
31.4 7.72 5.01 -2.45 -8.33 at 140°F
41.9 10.24 6.64 -2.65 -9.67

0 -0.01 -0.02 -0.01 0.00

Table 33 shows the change in stiain gage readings, with the load held at

41,900 1bs (16 KSI) and the temperature at 140°F, to determine load redistri-

bution due to adhesive creep after 100,000 fatigue load cycles.

TABLE 33

CHANGE IN STRAIN GAGE DATA FOR 41.9 KIPS CONSTANT LOAD

TIME GAGE-G1 GAGE-G2 GAGE-G3 GAGE-G4
MIN. STRESS-KSI STRESS-KSI STRESS-KSI STRESS-KSI
|
0 0 0 0 0

20 -0.04 -0.07 -0.02 -0.06

40 -0.02 -0.06 -0.05 -0.10

60 -0.15 -0.19 +0.07 +0.02

80 -0.39 -0.46 +0.32 +0.27
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Table 34 then indicates the change in strain gage readings recorded, with the
load held at 62,800 1bs. (24 KSI) and ambient temperature, to determine load

redistribution due to creep at the higher joad.

TABLE 34

CHANGE IN STRAIN GAGE DATA AT 62.8 KIPS DUE TO
CREEP AT ROOM TEMPERATURE

TIME LOAD GAGE-G1 GAGE-G2
HOURS KIPS JASTRESS-KSI | ASTRESS-KSI
0 62.8
1/2 62.8 -0.04 -0.07
1 62.8 -0.06 -0.10
1-1/2 62.8 -0.07 -0.11
2 62.8 -0.09 -0.13
2-1/2 62.8 -0.12 -0.17
3 62.8 -0.14 -0.18
3-1/2 62.8 -0.19 -0.24
4 62.8 -0.22 -0.27

GAGE-G3

ASTRESS-KSI

0 0 0 0

OO OOOOOOO
—~ OO0 0O0000OO0O
~ ONDWN—O

GAGE-G4

ASTRESS-KSI

QOO OO0OO0O0O0OO
OO0 O0O0O0O0O
—_——S" N WO UT O,

Table 35 shows the strain gage data recorded during the 62.8KIPS (24 KSI)

fatigue cycle testing.

and 30,000 cycles.

TABLE 35
STRAIN GAGE DATA FOR THE 62.8 KIP FATIGUE CYCLES AT R.T.

Readings were taken at zero cycles, 10,000, 20,000
Panel failure occurred at 33,400 cycles.

LOAD | GAGE-G1| GAGE-G2 | GAGE-G3 | GAGE-G4
KIPS | KSI | KSI KSI KSI REMARKS
" F
B . Readings taken before
62.8 16.23 9.91 2.05 10.92 start of fatigue
cycling
. _ Readings taken after
62.8 | 15.33 9.86 1.4 9.81 10,000 fatique cycles
- - Readings taken after
62.8 | 15.23 9.72 0.70 9.09 20,000 fatigue'cycles
K . J_ Readings taken after
62.8 | 15.22 9.67 0.10 8.48 30,000 fatigue cycles

Panel failure occurred at 33,400 cycles.
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The panel failed after experiencing 100,000 cycles at Omax = 16,000 psi
and 140°F and 33,479 cycles at Omax = 24,000 psi and room tempe ‘ature. The
failure initiated c¢n the faying surface side of the .125 in. thick splice
doubler approximately 4 in. from the edge of the panel. The location of the
failure in the splice doubler is shown in Figure 94 and the fracture face at
the fatigue origin is shown in Figure 95. Analysis of this panel predicted
both the high peel stresses and the high bending stresses in the splice p.ate
because of the eccentricity in load path.

A striation count of the fatigue origin indicated approximately 35,500
cycles of crack growth prior to failure. This number corresponds to the
number of cycles at Omax = 24,000 psi. It is therefore conjectured that the
fatigue crack initiated during cycling at Omax = 24,000 psi.

There was some evidence of bond delamination, adjacent to the skin
junction, by visual observation during the test. The extent of this delam-
ination was measured with the aid of dye penetrant and then prying the skin
and splice doubler apart. The extent of the disbond can be seen in the dark
areas in Figure 96.

One Bay Crack Growth Time History Specimen N30A . - This internal longeron
concept test was conducted to obtain crack propagation data and verify that
the initial flaw does not attain critical length in two lifetimes (38,028
cycles) or that a two inch crack does not attain critical length in wo depot
inspection periods (9,807 cycles); and verify analysis methods.

The panel and splice doublers were of 7475-T761 bare aluminum sheet. The
frames and longerons were of 7075-T6 aluminum. The panel was installed in
the 1.5 million pound testing towers and cycled at approximately 1 Hz. The
applied stress was 17,800 psi with a R rztio of 0.05.

Table 36 records the strain gage readings at the maximum applied stress.
Failures 3-10 were skin cracks at the ends of the shear tee cutouts for the
Tongeron as shown in Figure 97. At 36,803 cycles, cracks 6, 8 and 10 joined
to precipitate failure of the panel.
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Figure 37 shows the panel geometry and strain gage and failure locations.
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N30A STRAIN GAGE READINGS TAKEN AT 12,000 CYCLES

TABLE 36

STRAIN GAGE STRESS
NUMBER PSI
S SRS

1 23,500

2 11,250

3 4,250

4 13,375

5 16,000

6 21,000

7 16,750

8 17,750

9 21,500

10 18,250

1 19,000

12 12,000

~
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As a result of this type of failure, engineering design changes were
incorporated in the remaining internal longeron concept flat panel specimens ‘
to bridge the gaps in the shear tees at the longeron cutout. Crack lengths
for the failures noted in Figure 97 are tabled vs cycles in Table 37. Figure
98 is a sketch of the failure of the panel.
TABLE 37
N30A Crack Length vs Cycles
Total Crack Length - Inches
FAILURE NUMBER
CYCLES 1 2 3 4 15 |6 |1 8 | 9 1w
0 2 .2
3,000 .2 2
6,000 2 .2
9,000 .2 .2
12,000 .2 .2 ‘
15,000 .2 .40 ]
18,000 2 .5 :
21,000 .2 .66
24,001 .2 .77
27,000 .2 [1.00
30,000 .2 |1.240
31,370 .2 4,25
32,370 2 4.97
33,19 .2 |1.58d
33,370 2 6.10
34,100 .2 |1.750
34,370 .2 7.70
35,070 .2 {1.870 2.29|2.51{1.23| 2.00
35,370 .2 [2.00 10.20 '
36,016 .2 |2.050 2.50{2.75} 1.3 2.3
36,370 .2 N4.10
36,800 .2 p1.80
36,803 .2 }2.78%1.12%2.504 *+ p8.504 2.634 3.189 1.134 1.461
Cracks 6, 8, and 10 joined to precipitate failure of the panel,
* Readings taken after failure
** Undetected visually after fajlure
!
t
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Crack Propagation and Residual Strength Test N30AB-1 - Two tests were con-
ducted on the N30AB panel which represented the internal longeron concept.

The purpose of the first test was to establish the adequacy of the modification
to the frame-longeron intersection area to retard crack growth in the skin.

The N30A panel previously discussed developed fatigue cracks *n the skin at
the frame-tee discontinuity which ultimately led to failure. In addition,
the N30AB panel was tested to demonstrate fail safety for foreign object
damage.

The test panel consisted of 108 in. wide skin panel stiffened by 5
equaliy spaced frames 24 in. apart. The panel was 144 in. long. At its mid-
point there was a longeron which intersected the frames creating 10 frame-tee
discontinuity areas. The panel is shown in Figure 99, Each of the frame-tee
discontinuities was reinforced by a cold bonded strap which bridged the gap

in the skin between the frame-tee flange and the longeron flange. This is
also illustrated in Figure 99. A 0.29 in. slot was sawcut in the skin between
two adjacent reinforcing straps. This slot lies in the narrow piece of skin
bounded by the longeron and frame tee-flanges in the vertical direction and
the two reinforcing straps in the lateral direction. The slot was centered

at the frame tee centerline of tne middle frame.

The test Toads were:
= 17,795 PSI , Pmax = 148,944 Lbs
7,449 Lbs

“max
R = 0.05 Pm’in

The cycling rate was approximately 1 Hz.

The specimen was cycled at the above loads for 37,208 cycles. The crack
length was measured and strain gage data recorded periodically. At 37,208
cycles, the crack length had reached the objective of 15 inches, approx-
imately 7 1/2 inches on each side of the frame. The crack growth time
history data is plotted in Figure 100, and summarized in Table 38. The strain
gage data shows that there was little or no change in the value of the skin

stress until the crack tip grew to within 5 inches of the strain gages.

This compicted ihe crack qrowth phase of the test.
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TABLE 38
Summary of Crack Growth and Strain Gage Data

Cycle | Flaw STRAIN GAGE DATA @ MAX. LOAD  PSI
No. | Length ] 2 3 4 5 6
n.
0 .290 | 24,000 | 11,100 | 17,700 | 17,600 | 24,800 | -5,100

4,000 Crack |24,400 | 11,450 | 18,500 | 18,400 { 25,500 | -5,400
Growth
Starts

6,000 .36 24,500 | 12,000 | 18,650 | 18,600 { 25,000 | -5,250

12,000 71 24,600 | 12,500 | 18,400 | 18,500 | 23,400 | -5,000

16,000 .98 24,600 { 10,900 | 17,500 | 18,000 | 25,000 { -5,100

20,000 | 1.39 24,000 { 10,600 | 17,500 | 18,200 | 25,200 | -5,100

24,000 [ 1.85 23,700 | 10,600 | 17,900 | 17,750 | 25,000 | -5,350

28,000 | 2.36 24,800 | 10,900 | 17,000 | 18,000 | 24,800 { -5,000

32,000 | 3.60 24,000 { 11,000 | 17,000 | 18,100 | 24,800 | -4,800

34,000 | 5.53 24,000 { 11,000 | 17,000 |{ 18,500 | 25,000 | -4,650

36,000 | 9.28 25,200 | 11,000 | 17,000 | 17,900 |{ 25,000 | -4,400

37,000 | 13.66 29,800 | 11,900 { 17,900 | 18,400 | 26,200 | -2,250 !

37,208 | 15.06 30,000 | 11,800 | 18,000 { 19,000 | 26,200 | -1,000
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The second phase of the test was residual strenath for foreign object
penetration. This damage consisted of a 15-inch skin crack with the center
frame broken. The skin crack size had been achieved during the crack
propagation phase. The frame was sawcut, at the longeron-frame intersection,
above the skin crack to simulate the foreign object penetration. The fail
safe load was applied and sustained. This load was:

— 18,400 PSI or pmax = 153,770 Lbs.

The load was applied in 10% increments with a Toading rate of 15,000 Lb/Min.
At 100% fail safe load the panel fast fractured and arrested at the two
adjacent frames. The load was dumped automatically. On reapplication of
the fail safe load,the panel failed at 154,000 Lbs.

The crack configuration at arrest is shown in Figure 101. The residual
strength diagram with the test points is shown in Figure 102.

Curved Panel Biaxial Fatique and Damage Tolerance Test, Specimen N21.
This test of the internal longeron concept was conducted to determine the
effect of biaxial stress on fatigue and damage tolerance. Testing was
accomplished in the following order:
(1) Fatigue test for two lifetimes (38,028 pressure cycles),
(2) Crack propagation tests for two additional lifetimes. The flaws to be
created at the specified locations by saw cutting,
(3) Residual strength tests under the following conditions:
(1)  Two bay longitudinal crack with the center frame intact,
(i) Foreign object damage (15" sawcut) with outer frame broken.
The load cycle was as shown in Figure 103 with the hoop and longitudinal
loads being applied symmetrically.
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The internal pressure loads were applied by suction on the upper
surface such that atmospheric pressure on the inside surface created the

required AP across the panel. The longitudinal loads were applied by servo

controlled hydraulic actuators. The two systems were synchronized such
that they achieved their peak values and decay simultaneously.

The pressure loads were reacted through a system of whiffle trees,

the reactions being measured by load cells. On application of AP = 7.15 psi

it was found that the total reaction load was well below the 116,000 Lbs.
desired. The AP value was increased to 8.6 psi at which the 116,000 Lbs.
reaction load was achieved. This was then the load at which the panel was
cycled.

Figure 104 shows the underside of the panel installed in the test fixture.
The longitudinal and transverse whiffle-trees are shown. It should be
noted that the frame loads are whiffled directly to the frames. A sketch
of the panel, Figure 98, st-ws the locations of the damage tolerance (DT)
flaws, the residual strengtt (RS) saw cuts, and the strain gages.

The fatigue test consisted of 38,028 lvad cycles. During this

test there were no fatigue cracks generated in the participating structure.

Subsequent to this, after the damage tolerance flaws were introduced, an
additional 38,028 cycles were applied. Other than the propagation of the
damage tolerance flaws, again no fatigue cracks were encountered in the
participating structure. After the residual strength tests, an additional
37,000 cycles,almost two lifetimes, were imposed on the specimen and still
no fatigue failures. The specimen was therefore subjected to » total of
almost six Tifetimes without experiencing any fatigue failures.

The damage tolerance flaws were introduced by sawcutting as shown in
Figure 105, The damage tolerance flaws are shown circled as DT1 through
DT6. Strain gage locations are shown with circled numbers from 1 through
16. Flaws DT5 and DT6 did not grow at all during the entire test. 1lhe
flaw at the edge of the fastener hole indicated in Figure 105 , alsc did
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not grow.
with no evidence of growth.

This flaw was amonitored periodically by X-rays during the test
The other three flaws DT1, DT2 and DT3 evidenced
rates of growth as detailed in Table 39 .

TABLE 39
Damage Tolerance Flaw Growth Time Histories

Crack from west end of initial sawcut entered skin splice bondline

208

NO. OF TOTAL CRACK LENGTH STRAIN GAGE READINGS

CYCLES | om o4 ST§.$¢GE ST;.?QGE ST;.?QGE o8
0 221 250 .250
9,000 | .22 270 250 | 12,483 | 9,739 | 17,390 | 8.894

12,000 | .328 270 .500 | 11,805 | 8,938 | 17,081 | 8.679
14,825 | .328 270 540 | 11,990 | 9,061 | 16,895 | 8.679
18,000 | .410 280 720 | 12,298 | 9,493 | 16,957 | 8.691
24,000 | .450 280 .850 | 11,681 | 8,692 | 16,895 | 8.631
28,000 | .510 280 | 1.5 111,866 | 8,815 | 16,772 | 8.57
29,000 | .560 330 | 1.25

| 32,000 | .660 330 | 1.6
34,000 | .670 43 | 1.93 | 12,914 | 8,912 | 17,673 | 8.667
38,030 | .91 .50 1.95
42,030 2.56
44,530 65 2.80 | 11,281 | 9,031 | 16,957 | 8.613
47,530 3.05_ | 10,849 | 9,697 | 16,338 | 8.649
49,530 | 1.58 3.20
51,530 3.43_ | 11,897 | 8,987 | 17,081 | 8.517
54,030 | 1.75 3.72
57,465 4.21
56,530 | 2.82 1.2 | 4.63
*C
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TABLE 39 (CONTINUED)

Damage Tolerance Flaw Growth Time Histories

NO. CF TOTAL CRACK LENGTH STRAIN GAGE READINGS, PSI
CYCLES STR.GAGE | STR.GAGE|STR.GAGE
DT DT2 DT4 # 1 # 12 416
60,570 2.97 4.88
62,405 307 | 1.22 | 5.48
. 17,470
64,030 3.75 | 1.30 | 5.9 | 12,575 | 9,923 |'a’Eke
64,530 3.88 | 1.55 | 6.15

66,030 4.4 1.55 1.1**

70,130 8.6

70,000 8.95

70,530 9.43

70,780 9,91

71,030 10.40

71,200 10.80 11,897 | 9,000 15’913
71,590 11.10

74,480 2.30

74,805 2.45 11,05 | a.am |'824%

** Crack had stopped at a rivet hole on the North side of the original sawcut.

The residual strength testing was accomplished in the following manner:
(1) The flaw DT6, skin was sawcut beyond tha frame tee flange for a total
length of 18 in. This flaw was renamed RS1. Approximately 40 cycles at
AP = 5 psi were applied to sharpen the sawcut tip with a small but visible
fatigue crack at each tip. Fail safe lopad was then applied. The fail safe
Toad is AP = 7.15 psi (hoop reaction load = 116,000 Lb.)***
Longitudinal load = 114,500 Lb.

*** NOTE: An 8.6 PSI test pressure was required to obtain this load.
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The loading sequence was to pressurize to full AP and then increase
the longitudinal Toad from zero to 114,500 1b. Note that the sequence of
load application was to achieve full AP first and then apply the longitudinal
Toad in increments. No flaw growth was noted on application of the pressure
loading. However, on application of the longitudinal load, the crack tip
turned 90° and grew in the circumferential direction to a total length of
0.65 in. The crack was approximately evenly centered about the original
crack. This phenomenon was observed only on the west side crack tip. No
failure was encountered for flaw length of 18 in.

The next step was to sawcut an additional one inch at each tip, to a
total length of 20 in. The crack was sharpened by cycling at 4P = 5 PSI and
then the fail safe load was applied. On application of the longitudinal load
in the fail safe load sequence, the crack grew circumferentially .52 in. at
the west tip only. This was at the newly establish crack tip. Again, no
failure was encountered. The sawcut was finally extended to 22 in. to the
edge of both frame tee flances. On application of the Tongitudinal load of
the fail-safe loading sequence, both the crack tips propagated into the frame
shear tee bondlines and turned circumferentially, in opposite directions.
Again, no failure was encountered on application of the fail safe load. The
data for this test is shown in Table 40 . A patch repair was installed to
permit continued testing.

(2) The next step was the residual strength test RS2, simulating foreign
object damage. The location of this damage is shown in Figure 105 . It
consisted of a 15 in. sawcut, both through the skin and frame. It was
intended that the fail safe load be applied in the same sequence as for RSI.
However, at AP = 6.9 PSI and zero longitudinal load, the flaw propagated

to the adjacent frames and disappeared into the frame tee flange glue lines.
The loading sequence was changed to applying the pressure and Tongitudinal
load simultaneously to the peak value and holding the AP and relaxing the
Tongitudinal loads in steps. No further failure was encountered. The data

is qiven in Table 4}
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TABLE 40
Residual Strength Test RS1 Data

FLAN &P LONGITUDINAR  STRAIN GAGE OATA - PSI
LE?:&TH st P;?J:[t))s STRAIN GAGE #
11 12 16
27,000 4,469 1,774 13,058
18.5 8.601 68,800 11,928 9,370 17,452
99,700 16,490 8.075 20,671
111.000 18,894 1.459 22,522
0 0 13,192 11,078 _
27,000 4,715 11,466 12,996
20.0 8.385 69,500 12,298 9,061 17,514
97,600 17,044 7,767 . 20.856
111,400 19,325 7,089 £2,527
0 0 12,205 N,63%
24,900 3,945 10,849 13,653
22.0 8.433 63,700 10,356 8,876 17,762
90,000 14,548 7,890 21,042
117,500 18,516 6,904 24,570
TABLE 41

RESIDUAL STRENGTH TEST RS2 DATA

l_ﬁ AP  ongi tudina Strain Gage Nat2 - PSI
PSI Load Strain Gage #
Pounds n 12 16
0 0 0 0 0
21,280 £,229 -1,356 4,177
60,404 10,089 ~2,404 8,695
89,705 14,704 -3,452 12,213
113,500 18,457 -4,253 16,926
2.260 113,867 18,072 -1,417 20,145
§.036 114,138 12,518 2,465 22,744
7.393 113,957 17,841 5.979 24,848
8.469 114,048 17,401 7,582 25,746
8.230 98,449 15,011 7,767 23,858
8.230 74,738 11,135 8,753 21,320
8.326 46,882 6,152 10,356 18,721
8.326 | 16,223 - 184 12,205 | 16,122 |

21




One Bay Crack Growth Time History - Specimen H30A - This honeycomb concept

test was conducted to:

(1) Obtain crack propagation data and verify that the initial flaw does
not ~ttain critical length in two 1ifetimes (38,028 cycles) or that a two
inch crack does not attain critical length in two depot inspection periods
(9,507 cycles); and

(2) Verify analysis methods.

Figure 106 shows the panel geometry with stra‘n gage and initial flaw
locations. Significant features are that it was made of 2024-T3 bare sheet

aluminum honeycomb sandwich panels. The splice doublers were also of bare
2024-T3 sheet. The longitudinal straps were of 7475-T761 aluminum sheet
while the frames were made of 7075-T6 aluminum.

The panel was installed in the 1.5 million pound testing towers and
cycled at approximately 1 Hz. The applied stress was 15,646 psi with a
R ratio of 0.05.

Table 42 records the total crack length versus cycles.

At a total crack length of 13.160 inches with a total of 92,102 cycles,
the test was stopped and the panel repaired for further testing.

Residual Strenqgth - Two Bay Crack, Center Stiffener Intact-H30B. - The
purpose of this honeycomb concept test was to verify the residual strength
of the hone, zomb concept for failsafe criteria with a two bay crack in the
outer skin, and verify analysis methods.

Figure 107 shows the panel geometry with strain gage and initial flaw

Tocations. The panel was made of 2024-T3 bare sheet aluminum honeycomb
sandwich panels. The panel splice doublers were also of bare 2024-T3 sheet.
fhe longitudinal straps were of 7475-T761 bare aluminum sheet and the frames
of 7075-T6 aluminum. The panel was loaded to 100,000 pounds in 20,000 pound
increments. From 100,000 pounds to failure, the load was increased in
10,000 pound increments.
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TABLE 42

Total Cycles vs. Crack Length

CYCLES

Le

33,195

530

35,305

.570

38,027

.575

40,560

.610

43,000

.650

43,357

.680

45,501

.720

+8,001

.760

50,500

.830

54,698

.920

55,906

1.020

51,000

1,130

66,000

1.400

71,000

1.770

76,000

2.380

81,000

3.070

89,010

4,380

88,010

6.520

90.010

9,250

90,977

10.560
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Table 43 lists the panel applied loads, strain gage readings, and crack
lengths. The panel failed at an applied load of 298,000 pounds as shown
in Figure 108.

Residual Strength-Foreign Object Damage-H30C. This honeycomb concept test
was conducted to show the structure has adequate residual strength in the
presence of a 15 inch flaw through the center frame and honeycomb sandwich
panel, and determine the ultimate strength of the panel.

The geometry, initial flaw, and strain gage locations for this panel
are shown in Figure 109,Significant features are that it was made of 2024-T3
bare sheet aluminum honeycomb sandwich. The splice straps were also made of
2024-T3 bare sheet. The frames were of 7075-T6 with the longitudinal straps
of 7475-T761 bare sheet. The panel was installed in the 1.5 million pound
testing towers, and loaded at a rate of approximately 13,000 pounds/minute

to failure.

Table 441ists the strain gage readings at several applied load levels.
The panel fa‘led at an applied load of 180,617 pounds when the panel
separated in line with the original flaw.
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MATERIALS and PROCESS

This section contains a summary of the effort during Phase Ib for the
selection of the anodize and primer surface treatment, the corrosion control
and the various structural and environmental tests leading to ths selection
of the adhesive. Additiona! tests of cast adhesives, or neat specimens, were
performed to obtain material property data on the candidate adhesives.

Mechanical fastening tests were made to determine the effect on the bond
Tine of chips and high speed drills. Fatigue, fracture toughness and crack
growth data was also obtained for 7475-T6 aluminum.
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Surface Treatment

Process Selection. - Three surface treatment processes for structural bonding
were selected for study. These processes included two different procedures
for chromic acid anodizing and a system of phosphoric acid anodizing. They
were as follows: (1) Phosphoric Acid Anodize, Spec. BAC-5555, Boeing Co. {2)
Chromic Acid Anodize, Spec. BPS FW4352, Rev. G, Bell Helicopter Co., (3)
Chromic Acid Anodize, Spec. PS-13201, McDonnell Douglas Corp. The sulfuric
acid, sodium dichromate etch (FPL), Spec. BAC-5514, Boeing Co., was used as
the baseline control treatment.
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Adhesion Evaluation Test Methods. - The primary evaluation criteria for bond
durability of the surface treatments was the wedge crack propagation test.
The test specimen configuration and dimensions are shown in the section on
Adhesive Environmental Properties. All surface treatment processes were
evaluated by processing 6 x 6 x .125 inches panels. These panels, after
bonding, were cut into five (5) one inch wide wedae crack test specimens.
The wedge was driven into one end of the specimen, and after a stabilizing
period of one hour, the crack in the specimens were measured and then exposed
to 100% relative humidity at 140°F (temperature and humidity studies). The _
crack growth was measured after one (1) hour exposure and then measurea :gain ;
after three (3) hours exposure.

The adhesive that was used in all the surface treatment evaluation test. :
was Bloomingdale FM73 and BR127 adhesive primer. 3
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Chemical Analysis & Solution Control. -

Alkaline Cleaner: - The phosphoric acid anodizing process per BAC-5555 required
the use of alkaline cleaner as specified in specification BAC-5749. Turco's 2
42155 (which is listed), a nonsilicated alkaline cleaner, was used for all
surface treatment processes evaluated. Control limits of the active ingredient
in 4215S alkaline cleaner, as submitted by the Turco Division of Purex, is on
file in the Douglas Aircraft Company laboratory.
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Deoxidizing Solutions: - (a) There are two (2) deoxidizers allowed by BAC-5555

to be used to prepare parts for phosphoric acid anodizing. The Amchem #6-16
deoxidizer was chosen instead of the Na2Cr207-H2504 solution for the following
reasons: (1) it can be used to remove heavy oxides, (2) it can be used in
existing laboratory and production tanks without installation of new liners,
and (3) it is operated at ambient temperature. The Amchem 6-16 deoxidizer .as
used for specimens and parts processed by phosphoric acid anodizing. The list
of active ingredients in the #6 and the #16 deoxidizer as submitted by Amchem
Products is on file in the Douglas Aircraft Company laboratory. (b) Douglas
develcped deoxidizer #1051 was used for all specimens processed with chromic
acid anodize per McDonnell Douglas PS 13201. (c) A sulfuric acid-sodium
dichromate solution at 140° - 160°F was used to deoxidize all specimens
processed with the Bell Helicopter chromic acid anodize per BPS FW4352, Rev. G.

Temperature and Humidity Study. - To establish the optimum temperature to
conduct the wedge crack propagation test, 2024-T3 and 7075-T6 panels were
alkaline cleaned, deoxidized and phosphoric acid anodized. The concentration
of the anodize solution was maintained in the middle of the concentration

range as shown in Table 45.

TABLE 45

PHOSPHORIC ACID ANODIZE PARAMETERS
PROCESSING LIMITS

VARTABLES LOWER | MEDIAN| UPPER

Acid Concentration (op2) 11 13.5 16
Voltage 8 10 12
Solution Temp °F 65 77.5 90
Anodizing Time (minutes) 20 22.5 25

The anodized panels were bonded using the FM73/BR127 adhesive and primer. The
temperature evaluation was conducted in 100% relative humidity at temperatures
of 100°F, 140°F and 160°F. The test results for the FPL etched specimens were
very erratic. However, the 140°F temperature seemed to be adequate for the
phosphoric acid anodized specimens. The 140°F temperature at 100% relative
humidity was chosen to be the test condition for all future wedge crack tests.
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Phosphoric Acid Anodizing Process Parameters Confirmation. - The processing
parameters for the phosphoric acid anodizing process were confirmed by the
use of the matrix as shown in Table 46. In accordance with the test matrix
of this Table 46, the effects of such variables as solution concentration
(C]CZ), applied voltage (ViVp), solution temperature (T1T2), and the anodizing
time (t1t2), were evaluated. Five (5) wedge crack test specimens for each
of the two alloys (2024-T3 and 7075-T6) were prepared for each of the test
grids indicated in the matrix diagram. Sixteen data points or 80 wedge
crack test specimens per data point were tested in the matrix per alloy.
The variables investigated were the highs and lows of the anodizing
parameter shown in Table 45. After anodizing, the specimens were primed
with BR127 adhesive primer. FM73 adhesive film was applied and the test
specimens bonded in an autoclave at 250°F for 90 minutes under 40 psi
pressure. All test specimens were NDI C-scan inspected. No voids were
noted in the bonded test specimens. The specimens were then cut into one
inch wide test specimens, and wedge crack tested at 100% RH and 140°F. The
crack growth was measured after one (1) hour and after three (3) hours.

In addition to the shorter periods, some specimens were also exposed for
periods of 18 and 168 hours. It appeared that the primary crack growth took
place within the first hour and this time was used for data points in the
matrix., The wedge crack growth test results for each condition showed the
adhesive failure to be cohesive and that the processing limits specified
per BAC 5555 provided a satisfactory surface treatment for good bond dura-
bility.

Chromic Acid Anodize Trade-Off Study-McDonnell Douglas Versus Bell. - A
comparison of two chromic acid anodizing processes, McDonnell Douglas PS
13201 and Bell Helicopter Co. BPS FW4352, Rev. G, was conducted using their
respective medium processing range. Both the Bell and McDonnell Douglas
chromic acid anodizing and sealing parameters are shown in Table 47. This
test was made to decide which system would be used for further evaluation.
One set (2 panels) each of nonclad 2024-T3 and 7075-T6 for the McDonnell
Douglas anodizing were processed using the median proce: sing range shown

in Table 47. The bonded specimens were cut into five {5) wedge crack
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TABLE 46

TEST MATRIX

C C,
t] | X [ X X |X
N
tr | X | X {x | X
ty | XX [ x |X
Ts

TABLE 47

CHROMIC ACID ANODIZE & SEALING PARAMETERS

M 2rE NS, Aa anh K or €L mAXC

ok i

2 il A Cachee,

A A M

PROCESSING LIMITS

VARIABLES MDC BELL HELICOPTER §
LOWER | MEDIAN| UPPER | LOWER |MEDIAN | UPPER ;
. Lohromic Acid Conc. (% free acid) | 4.5 5.25 A 3 - - ;
= | Voltage 17| 20 23| 3 |4 | 42 %
g Solution Temperature °F 85 95 100 | 92 | 935 | 95 :
Anodizing Time - Mins 25 35 _ 40 ) 30 | 32.5 | 35 §
Additive Chemical Potassium Dichromate Chromic Acid | g
| Concentration BT oo 2.5 | 5 1 6] 75 [102.5 | 120 3
= | Temperzture °F 185 195 205 | 180 {182.5 | 185 E

O Time - Mins. . 8 125 174718 9
pH N 4.2 | 5.5 61 _2.50 3.15| 3.8] ¥
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test specimens and the crack growth was measured after one (1) hour and
after three (3) hours. The above test was repeated for the Bell chromic
acid anodizing process.

The Bell anodize wedge crack test results on the 2024-T3 specimens
showed considerable adhesive failures associated with large crack growths.
The Bell system on 7075-T6 and the McDonnell Douglas anodize on both 2024 T3
and 7075-T6 did not show any adhesive failure. Because of the adhesive
failures of the Bell anndized 2024-T3 specimen, the McDonnell Douglas
chromic acid anodize was chosen for further evaluation.

Chromic Acid Anodize - Sealing Parameters Confirmation. - The processing
range for the sealing operation of the McDonnell Douglas chromic acid

anodizing process was studied by using the matrix as shown in Table 48.

A1l the anodizing was done at the median processing range as shown in

Table 47. In accordance wit